Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aromatic compounds radical addition reactions

These reactions are fast for a-hydrogens to -OH, -OR, or -NH2 substituents and considerably slower for a-hydrogens to -C02 and -NH,[ substituents (7). A small part of the primary radicals react with hydrogens at the (3-position. OH/ H radicals react very fast with aliphatic unsaturated compounds and aromatic compounds via addition to a double bond ... [Pg.273]

Toluene, an aLkylben2ene, has the chemistry typical of each example of this type of compound. However, the typical aromatic ring or alkene reactions are affected by the presence of the other group as a substituent. Except for hydrogenation and oxidation, the most important reactions involve either electrophilic substitution in the aromatic ring or free-radical substitution on the methyl group. Addition reactions to the double bonds of the ring and disproportionation of two toluene molecules to yield one molecule of benzene and one molecule of xylene also occur. [Pg.175]

The competitive method employed for determining relative rates of substitution in homolytic phenylation cannot be applied for methylation because of the high reactivity of the primary reaction products toward free methyl radicals. Szwarc and his co-workers, however, developed a technique for measuring the relative rates of addition of methyl radicals to aromatic and heteroaromatic systems. - In the decomposition of acetyl peroxide in isooctane the most important reaction is the formation of methane by the abstraction of hydrogen atoms from the solvent by methyl radicals. When an aromatic compound is added to this system it competes with the solvent for methyl radicals, Eqs, (28) and (29). Reaction (28) results in a decrease in the amount... [Pg.161]

In recent years, the importance of aliphatic nitro compounds has greatly increased, due to the discovery of new selective transformations. These topics are discussed in the following chapters Stereoselective Henry reaction (chapter 3.3), Asymmetric Micheal additions (chapter 4.4), use of nitroalkenes as heterodienes in tandem [4+2]/[3+2] cycloadditions (chapter 8) and radical denitration (chapter 7.2). These reactions discovered in recent years constitute important tools in organic synthesis. They are discussed in more detail than the conventional reactions such as the Nef reaction, reduction to amines, synthesis of nitro sugars, alkylation and acylation (chapter 5). Concerning aromatic nitro chemistry, the preparation of substituted aromatic compounds via the SNAr reaction and nucleophilic aromatic substitution of hydrogen (VNS) are discussed (chapter 9). Preparation of heterocycles such as indoles, are covered (chapter 10). [Pg.381]

Radical cations resulting from oxidation of olefins, aromatic compounds, amino groups, and so on, can react by electrophilic addition to a nucleophilic center as shown, for example, in Scheme 1 [2, 3]. The double bond activated by an electron-donating substituent is first oxidized leading to a radical cation that attacks the nucleophilic center. The global reaction is a two-electron process corresponding to an ECEC mechanism. [Pg.341]

Initiation of a free radical chain takes place by addition of a free radical (R ) to a vinyl monomer (Equation 6.8). Polystyrene (PS) will be used to illustrate the typical reaction sequences. (Styrene, like many aromatic compounds, is toxic, and concentrations that come into contact with us should be severely limited.) It is important to note that the free radical (R ) is a companion of all polymerizing species and is part of the polymer chain acting as an end group and hence should not be called a catalyst even though it is often referred to as such. It is most properly referred to as an initiator. [Pg.177]

Fullerenes, among which the representative and most abundant is the 4 symmetrical Cgg with 30 double bonds and 60 single bonds, are known to behave as electron-deficient polyenes rather than aromatic compounds [7]. The energy level of the triply degenerate LUMO of Cgg is almost as low as those of p-benzoquinone or tetracyanoethylene. Thus, a wide variety of reactions have been reported for Cgg such as nucleophilic addition, [4-1-2] cycloaddition, 1,3-dipolar addition, radical and carbene additions, metal complexation, and so on [7]. Fullerene Cgg also undergoes supramolecular complexation with various host molecules having electron-donating ability and an adequate cavity size [8]. [Pg.186]

Recently, Behiman and coworkers discussed the mechanism of the Elbs oxidation reaction and explained why the para product predominates over the ortho product in this oxidation. According to the authors, semiempirical calculations show that the intermediate formed by the reaction between peroxydisulfate anion and the phenolate ion is the species resulting from reaction of the tautomeric carbanion of the latter rather than by the one resulting from the attack by the oxyanion. This is confirmed by the synthesis of the latter intermediate by the reaction between Caro s acid dianion and some nitro-substituted fluorobenzenes. An example of oxidative functionalization of an aromatic compound is the conversion of alkylated aromatic compound 17 to benzyl alcohols 20. The initial step in the mechanism of this reaction is the formation of a radical cation 18, which subsequently undergoes deprotonation. The fate of the resulting benzylic radical 19 depends on the conditions and additives. In aqueous solution, for example, further oxidation and trapping of the cationic intermediate by water lead to the formation of the benzyl alcohols 20 (equation 13) . ... [Pg.1008]

Consequently, the excited 3 Ru(bipy)32+ state can be produced via three different routes (i) Ru(bipy)3+ oxidation by TPrA"+ cation radical, (ii) Ru(bipy)33+ reduction by TPrA" free radical, and (iii) the Ru(bipy)33 + and Ru(bipy)3 + annihilation reaction. The ECL intensity for the first and second waves was found to be proportional to the concentration of both Ru(bipy)32+ and TPrA species in a very large dynamic range with reported detection limits as low as 0.5 pM155 for Ru(bipy)32+ and 10 nM156 for TPrA. In addition to Ru(bipy)32+, many other metal chelates and aromatic compounds or their derivatives can produce ECL in the presence of TPrA as a coreactant upon electrochemical oxidation (cf. Chapter 4 in the Bard s ECL monograph.32). [Pg.497]

The catalytic or initiated reaction involves heating the poly(diene) in an aromatic solvent to temperatures between 120-150 °C in the presence of free radical initiators such as peroxides, hydroperoxides and azo compounds. The ensuing reaction involves addition of maleic anhydride to a polymeric radical which was formed by abstraction of an allylic hydrogen by initiator radicals. Four modes of addition are possible leading to partial structures such as (175)-(178) illustrated with poly(isoprene). It can readily be seen that some crosslinking is an inherent problem because of structures (177) and (178). The amount of gel formed, however, is found to be largely dependent on the initiator employed and can be minimized, especially with hydroperoxide initiators. [Pg.303]

In addition to being oxidized by the hydroxyl radical, alkenes may react with the N03 radical as has been described by several investigators (52, 56, 66). Listed in Table I are some of the organic nitrates that have been predicted to be produced via reaction of OH and N03 with isoprene and pro-pene. Analogous compounds would be expected from other simple alkenes and from terpenes such as a- and (3-pinene. Other possible organic nitrates may be produced via the oxidation of aromatic compounds (53, 54) and the oxidation of carbonaceous aerosols (67). Quantitative determination of these species has not been made in the ambient atmosphere. [Pg.273]


See other pages where Aromatic compounds radical addition reactions is mentioned: [Pg.125]    [Pg.199]    [Pg.150]    [Pg.174]    [Pg.7]    [Pg.193]    [Pg.235]    [Pg.256]    [Pg.516]    [Pg.585]    [Pg.448]    [Pg.79]    [Pg.118]    [Pg.145]    [Pg.121]    [Pg.289]    [Pg.122]    [Pg.610]    [Pg.99]    [Pg.232]    [Pg.147]    [Pg.921]    [Pg.586]    [Pg.469]    [Pg.28]    [Pg.45]    [Pg.5]    [Pg.94]    [Pg.150]    [Pg.562]   
See also in sourсe #XX -- [ Pg.766 , Pg.767 , Pg.768 , Pg.769 ]




SEARCH



Addition aromatics

Addition reactions compounds

Aromatic compounds reactions

Aromatic compounds, addition

Aromatic compounds, addition reactions

Radical reaction addition

Radical reactions, aromatic compounds

© 2024 chempedia.info