Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Arenes with carbenes

Arene(alkoxy)carbene chromium complexes react with aryl-, alkyl-, terminal, or internal alkynes in ethers or acetonitrile to yield 4-alkoxy-1-naphthols, with the sterically more demanding substituent of the alkyne (Rl Figure 2.24) ortho to the hydroxy group. Acceptor-substituted alkynes can also be used in this reaction (Entry 4, Table 2.17) [331]. Donor-substituted alkynes can however lead to the formation of other products [191,192]. Also (diarylcarbene)pentacarbonyl chromium complexes can react with alkynes to yield phenols [332]. [Pg.50]

At the beginning of the new millennium, Hashmi et al. presented a broad research study on both intramolecular and intermolecular nucleophilic addition to alkynes and olefins [18]. One of the areas covered by these authors was the isomerization of co-alkynylfuran to phenols [19]. After that, Echavarren and coworkers identified the involvement of gold-carbene species in this type of process, thus opening a new branch in gold chemistry [20]. And subsequently, Yang and He demonstrated the initial activation of aryl —H bonds in the intermolecular reaction of electron-rich arenes with O-nucleophiles [21, 22]. [Pg.431]

The chromium carbonyl linkers 1.40 (98) and 1.41 (99) were prepared from commercial triphenylphospine resin and respectively from pre-formed p-arene chromium carbenes and Fischer chromium amino carbenes. Their SP elaboration is followed by cleavage with pyridine at reflux for 2 h (1.40) and with iodine in DCM for 1 h at rt (1.41) both linkers produce the desired compounds in good yields. A similar cobalt carbonyl linker 1.42 (100) was prepared as a mixmre of mono- (1.42a) and bis- (1.42b) phosphine complex, either from pre-formed alkyne complexes on triphenylphosphine resin or by direct alkyne loading on the bisphosphine cobalt complex traceless cleavage was obtained after SP transformations by aerial oxidation (DCM, O2, hp, 72 h, rt) and modified alkynes were released with good yields and... [Pg.21]

Similarly, the transition metal catalyzed cyclopropanation of alkenes or arenes with diazo compounds, in general, involves short-lived metal-carbene complexes which react with the alkene with concomitant reductive elimination of the metal fragment. Although not involving free carbenes, such reactions are covered fully in this section. [Pg.406]

Abstract The photoinduced reactions of metal carbene complexes, particularly Group 6 Fischer carbenes, are comprehensively presented in this chapter with a complete listing of published examples. A majority of these processes involve CO insertion to produce species that have ketene-like reactivity. Cyclo addition reactions presented include reaction with imines to form /1-lactams, with alkenes to form cyclobutanones, with aldehydes to form /1-lactones, and with azoarenes to form diazetidinones. Photoinduced benzannulation processes are included. Reactions involving nucleophilic attack to form esters, amino acids, peptides, allenes, acylated arenes, and aza-Cope rearrangement products are detailed. A number of photoinduced reactions of carbenes do not involve CO insertion. These include reactions with sulfur ylides and sulfilimines, cyclopropanation, 1,3-dipolar cycloadditions, and acyl migrations. [Pg.157]

An unprecedented carbene insertion reaction was observed on reaction of the cationic re-arene ruthenium amidinates with trimethylsilyldiazo-methane (Scheme 145, TFPB = tetrakis[3,5-bis(trifluoromethyl)phenyl]borate). [Pg.281]

The enthalpies of reaction for nucleophilic carbencs depend on the stereoelec-tronic properties of the ligands affecting the availability of the carbene lone pair. An example of electronic influence is the 3.5 kcal/mol enthalpy difference between the isosteric pair IMes and IMesCI that shows the electron-withdrawing nature of Cl compared to H. This trend again is in line with electron donor/withdrawing ability of arene substituents. The effect in this la.st case is a long range electronic... [Pg.185]

Other synthetic approaches have been explored for binding an alkylidene functionality to a metalla-calix[4]arene. Among them, the reaction of diazoalkanes with coordinatively unsaturated metalla-calix[4]arenes deserves particular mention. The synthesis of an unusual high-spin (5.2 BM at 292 K) iron(II)-carbene, 192, is displayed in Scheme 39,13 and its structure is shown in Fig. 22. [Pg.227]

Scheme 2 shows the preparation of carbene complexes starting from [L M-ER3]" = [MeCp(CO)2Mn-SiMePlt2] and [(7r-arene)(CO)2Cr-SnPh3] [12,13]. By a related approach, a cationic cyclopropenylidene complex was prepared by reaction of Cp(CO)2FeSiMe3 with l-chloro-2,3-diphenylcyclopropenylium tetrafluoroborate [14],... [Pg.207]

From Chapter 7 it is apparent that the trichloromethyl anion is formed under basic conditions from chloroform, as a precursor of the carbene. The anion can also react with Jt-deficient alkenes (see Section 7.3) and participate in nucleophilic substitution reactions, e.g. 1,1-diacyloxy compounds are converted into 1,1,1-trichloroalkan-2-ols [58] (Scheme 6.35). Similarly, benzyl bromides are converted into (2-bromoethynyl)arenes via an initial nucleophilic displacement followed by elimination of hydrogen bromide [59] (Scheme 6.35). [Pg.299]

Electron-rich carbyne complexes can react at the carbyne carbon atom with electrophiles to yield carbene complexes. Numerous examples of such reactions, mostly protonations, have been reported [519]. Depending on the nucleophilicity of the carbyne complex, such reactions will occur more or less readily. The protonation of weakly nucleophilic carbyne complexes requires the use of strong acids, such as triflic [533], tetrafluoroboric [534] or hydrochloric acid [535,536]. More electron-rich carbyne complexes can, however, even react with phenols [537,538], water [393,539], amines [418,540,541], alkyl halides, or intramolecularly with arenes (cyclometallation, [542]) to yield the corresponding carbene complexes. A selection of illustrative examples is shown in Figure 3.25. [Pg.96]

Some Schrock-type carbene complexes, i.e. high-valent, electron-deficient, nucleophilic complexes of early transition metals, can undergo C-H insertion reactions with simple alkanes or arenes. This reaction corresponds to the reversal of the formation of these carbene complexes by elimination of an alkane (Figure 3.36). [Pg.119]

Inter- and intramolecular (cyclometallation) reactions of this type have been ob-.served, for instance, with titanium [408,505,683-685], hafnium [411], tantalum [426,686,687], tungsten [418,542], and ruthenium complexes [688], Not only carbene complexes but also imido complexes L M=NR of, e.g., zirconium [689,690], vanadium [691], tantalum [692], or tungsten [693] undergo C-H insertion with unactivated alkanes and arenes. Some illustrative examples are sketched in Figure 3.37. No applications in organic synthesis have yet been found for these mechanistically interesting processes. [Pg.121]

The formation of six-membered or larger rings by intramolecular C-H bond insertion normally requires the attacked position to be especially activated towards electrophilic attack [1157,1158]. Electron-rich arenes or heteroarenes [1159-1162] and donor-substituted methylene groups can react intramolecularly with electrophilic carbene complexes to yield six- or seven-membered rings. Representative examples are given in Table 4.8. [Pg.189]

A wide range of olefins can be cyclopropanated with acceptor-substituted carbene complexes. These include acyclic or cyclic alkenes, styrenes [1015], 1,3-dienes [1002], vinyl iodides [1347,1348], arenes [1349], fullerenes [1350], heteroare-nes, enol ethers or esters [1351-1354], ketene acetals, and A-alkoxycarbonyl-[1355,1356] or A-silyl enamines [1357], Electron-rich alkenes are usually cyclopropanated faster than electron-poor alkenes [626,1015],... [Pg.218]


See other pages where Arenes with carbenes is mentioned: [Pg.110]    [Pg.281]    [Pg.451]    [Pg.255]    [Pg.73]    [Pg.198]    [Pg.82]    [Pg.280]    [Pg.20]    [Pg.177]    [Pg.23]    [Pg.133]    [Pg.366]    [Pg.210]    [Pg.263]    [Pg.424]    [Pg.34]    [Pg.162]    [Pg.282]    [Pg.287]    [Pg.28]    [Pg.527]    [Pg.273]    [Pg.218]    [Pg.207]    [Pg.161]    [Pg.1]    [Pg.21]    [Pg.67]    [Pg.74]    [Pg.31]    [Pg.714]    [Pg.177]   
See also in sourсe #XX -- [ Pg.869 ]




SEARCH



Arene carbene

With Carbenes

With arenes

© 2024 chempedia.info