Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Arene carbene

PPh3 breaks the O—>Mo bond even at -40°C.3i3 Thermolysis of the carbene Cr(CO)5 =C(OMe)C6H4Ph-o results in the arene carbene complex 52. ... [Pg.219]

Moreover, binding through a methylene tether the arene ligand with the dihydroimidazolm-2-ylidene unit, in a half-sandwieh mode, led to the r[ Ti -arene-carbene Ru-allenylidene eomplex 55, whieh was highly aetive in RCM of 1,6-dienes. This eomplex allowed to seleetively direct metathesis of dienes either towards RCM or cycloisomerization products. [Pg.58]

Due to the inherent unsymmetric arene substitution pattern the benzannulation reaction creates a plane of chirality in the resulting tricarbonyl chromium complex, and - under achiral conditions - produces a racemic mixture of arene Cr(CO)3 complexes. Since the resolution of planar chiral arene chromium complexes can be rather tedious, diastereoselective benzannulation approaches towards optically pure planar chiral products appear highly attractive. This strategy requires the incorporation of chiral information into the starting materials which may be based on one of three options a stereogenic element can be introduced in the alkyne side chain, in the carbene carbon side chain or - most general and most attractive - in the heteroatom carbene side chain (Scheme 20). [Pg.135]

Abstract The photoinduced reactions of metal carbene complexes, particularly Group 6 Fischer carbenes, are comprehensively presented in this chapter with a complete listing of published examples. A majority of these processes involve CO insertion to produce species that have ketene-like reactivity. Cyclo addition reactions presented include reaction with imines to form /1-lactams, with alkenes to form cyclobutanones, with aldehydes to form /1-lactones, and with azoarenes to form diazetidinones. Photoinduced benzannulation processes are included. Reactions involving nucleophilic attack to form esters, amino acids, peptides, allenes, acylated arenes, and aza-Cope rearrangement products are detailed. A number of photoinduced reactions of carbenes do not involve CO insertion. These include reactions with sulfur ylides and sulfilimines, cyclopropanation, 1,3-dipolar cycloadditions, and acyl migrations. [Pg.157]

Chromium carbene complexes having electron-rich arenes tethered to the car-bene oxygen or carbon underwent photodriven intramolecular Friedel-Crafts acylation in the presence of zinc chloride (Eqs. 32 and 33) [118]. The process was highly regioselective, undergoing acylation exclusively para to the activating group. [Pg.189]

The synthesis and characterization of the monomeric amidinato-indium(I) and thallium(I) complexes [Bu C(NAr)2]M[But(NAr(NHAr)] (M = In, Tl Ar = 2,6-Pr2CgH3) have been reported. Both compounds were isolated as pale yellow crystals in 72-74% yield. These complexes, in which the metal center is chelated by the amidinate ligand in an N, j -arene-fashion (Scheme 33), can be considered as isomers of four-membered Group 13 metal(I) carbene analogs. Theoretical studies have compared the relative energies of both isomeric forms of a model compound, In[HC(NPh)2]. ... [Pg.210]

An unprecedented carbene insertion reaction was observed on reaction of the cationic re-arene ruthenium amidinates with trimethylsilyldiazo-methane (Scheme 145, TFPB = tetrakis[3,5-bis(trifluoromethyl)phenyl]borate). [Pg.281]

The enthalpies of reaction for nucleophilic carbencs depend on the stereoelec-tronic properties of the ligands affecting the availability of the carbene lone pair. An example of electronic influence is the 3.5 kcal/mol enthalpy difference between the isosteric pair IMes and IMesCI that shows the electron-withdrawing nature of Cl compared to H. This trend again is in line with electron donor/withdrawing ability of arene substituents. The effect in this la.st case is a long range electronic... [Pg.185]

Other synthetic approaches have been explored for binding an alkylidene functionality to a metalla-calix[4]arene. Among them, the reaction of diazoalkanes with coordinatively unsaturated metalla-calix[4]arenes deserves particular mention. The synthesis of an unusual high-spin (5.2 BM at 292 K) iron(II)-carbene, 192, is displayed in Scheme 39,13 and its structure is shown in Fig. 22. [Pg.227]

Scheme 2 shows the preparation of carbene complexes starting from [L M-ER3]" = [MeCp(CO)2Mn-SiMePlt2] and [(7r-arene)(CO)2Cr-SnPh3] [12,13]. By a related approach, a cationic cyclopropenylidene complex was prepared by reaction of Cp(CO)2FeSiMe3 with l-chloro-2,3-diphenylcyclopropenylium tetrafluoroborate [14],... [Pg.207]

From Chapter 7 it is apparent that the trichloromethyl anion is formed under basic conditions from chloroform, as a precursor of the carbene. The anion can also react with Jt-deficient alkenes (see Section 7.3) and participate in nucleophilic substitution reactions, e.g. 1,1-diacyloxy compounds are converted into 1,1,1-trichloroalkan-2-ols [58] (Scheme 6.35). Similarly, benzyl bromides are converted into (2-bromoethynyl)arenes via an initial nucleophilic displacement followed by elimination of hydrogen bromide [59] (Scheme 6.35). [Pg.299]

Arene(alkoxy)carbene chromium complexes react with aryl-, alkyl-, terminal, or internal alkynes in ethers or acetonitrile to yield 4-alkoxy-1-naphthols, with the sterically more demanding substituent of the alkyne (Rl Figure 2.24) ortho to the hydroxy group. Acceptor-substituted alkynes can also be used in this reaction (Entry 4, Table 2.17) [331]. Donor-substituted alkynes can however lead to the formation of other products [191,192]. Also (diarylcarbene)pentacarbonyl chromium complexes can react with alkynes to yield phenols [332]. [Pg.50]

Electron-rich carbyne complexes can react at the carbyne carbon atom with electrophiles to yield carbene complexes. Numerous examples of such reactions, mostly protonations, have been reported [519]. Depending on the nucleophilicity of the carbyne complex, such reactions will occur more or less readily. The protonation of weakly nucleophilic carbyne complexes requires the use of strong acids, such as triflic [533], tetrafluoroboric [534] or hydrochloric acid [535,536]. More electron-rich carbyne complexes can, however, even react with phenols [537,538], water [393,539], amines [418,540,541], alkyl halides, or intramolecularly with arenes (cyclometallation, [542]) to yield the corresponding carbene complexes. A selection of illustrative examples is shown in Figure 3.25. [Pg.96]

Some Schrock-type carbene complexes, i.e. high-valent, electron-deficient, nucleophilic complexes of early transition metals, can undergo C-H insertion reactions with simple alkanes or arenes. This reaction corresponds to the reversal of the formation of these carbene complexes by elimination of an alkane (Figure 3.36). [Pg.119]

Inter- and intramolecular (cyclometallation) reactions of this type have been ob-.served, for instance, with titanium [408,505,683-685], hafnium [411], tantalum [426,686,687], tungsten [418,542], and ruthenium complexes [688], Not only carbene complexes but also imido complexes L M=NR of, e.g., zirconium [689,690], vanadium [691], tantalum [692], or tungsten [693] undergo C-H insertion with unactivated alkanes and arenes. Some illustrative examples are sketched in Figure 3.37. No applications in organic synthesis have yet been found for these mechanistically interesting processes. [Pg.121]

The formation of six-membered or larger rings by intramolecular C-H bond insertion normally requires the attacked position to be especially activated towards electrophilic attack [1157,1158]. Electron-rich arenes or heteroarenes [1159-1162] and donor-substituted methylene groups can react intramolecularly with electrophilic carbene complexes to yield six- or seven-membered rings. Representative examples are given in Table 4.8. [Pg.189]

A wide range of olefins can be cyclopropanated with acceptor-substituted carbene complexes. These include acyclic or cyclic alkenes, styrenes [1015], 1,3-dienes [1002], vinyl iodides [1347,1348], arenes [1349], fullerenes [1350], heteroare-nes, enol ethers or esters [1351-1354], ketene acetals, and A-alkoxycarbonyl-[1355,1356] or A-silyl enamines [1357], Electron-rich alkenes are usually cyclopropanated faster than electron-poor alkenes [626,1015],... [Pg.218]

Perhaps most dramatically of all, for the first time, bis(carbene)-substituted iridium complexes, such as [Ir(cod)(NHC)2] (NHC = 1,3-dimethyl- or 1,3-dicyclohexylimidazolin-2-ylidene] were successfully used by Herrmann and coworkers as C—H-activation catalysts in the synthesis of arylboronic acids starting from pinacolborane and arene derivatives [46]. [Pg.52]


See other pages where Arene carbene is mentioned: [Pg.330]    [Pg.922]    [Pg.594]    [Pg.921]    [Pg.16]    [Pg.18]    [Pg.26]    [Pg.330]    [Pg.330]    [Pg.922]    [Pg.594]    [Pg.921]    [Pg.16]    [Pg.18]    [Pg.26]    [Pg.330]    [Pg.177]    [Pg.23]    [Pg.133]    [Pg.155]    [Pg.366]    [Pg.210]    [Pg.198]    [Pg.199]    [Pg.263]    [Pg.194]    [Pg.424]    [Pg.34]    [Pg.162]    [Pg.282]    [Pg.287]    [Pg.28]    [Pg.527]    [Pg.273]    [Pg.218]   
See also in sourсe #XX -- [ Pg.3 , Pg.324 , Pg.325 ]

See also in sourсe #XX -- [ Pg.3 , Pg.324 , Pg.325 ]




SEARCH



Arene ruthenium carbene derivatives

Arenes Chromium carbene complexes

Arenes with carbenes

© 2024 chempedia.info