Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Modelling Aquatic Systems

Landrum PF, Lee H II, Lydy MJ (1992) Toxicokinetics in aquatic systems model comparisons and use in hazard assessment. Environ Toxicol Chem 11 1709-1725. [Pg.156]

Solubihties of 1,3-butadiene and many other organic compounds in water have been extensively studied to gauge the impact of discharge of these materials into aquatic systems. Estimates have been advanced by using the UNIFAC derived method (19,20). Similarly, a mathematical model has been developed to calculate the vapor—Hquid equiUbrium (VLE) for 1,3-butadiene in the presence of steam (21). [Pg.341]

Hoffman, M. R. (1981). Thermodynamic, kinetic and extra-thermodynamic considerations in the development of equilibrium models for aquatic systems. Environ. Sci. Technol. 15,345-353. [Pg.417]

Absorption across biological membranes is often necessary for a chemical to manifest toxicity. In many cases several membranes need to be crossed and the structure of both the chemical and the membrane need to be evaluated in the process. The major routes of absorption are ingestion, inhalation, dermal and, in the case of exposures in aquatic systems, gills. Factors that influence absorption have been reviewed recently. Methods to assess absorption include in vivo, in vitro, various cellular cultures as well as modelling approaches. Solubility and permeability are barriers to absorption and guidelines have been developed to estimate the likelihood of candidate molecules being absorbed after oral administration. ... [Pg.33]

Fate of Chemicals in Aquatic Systems Process Models and Computer Codes... [Pg.25]

Export processes are often more complicated than the expression given in Equation 7, for many chemicals can escape across the air/water interface (volatilize) or, in rapidly depositing environments, be buried for indeterminate periods in deep sediment beds. Still, the majority of environmental models are simply variations on the mass-balance theme expressed by Equation 7. Some codes solve Equation 7 directly for relatively large control volumes, that is, they operate on "compartment" or "box" models of the environment. Models of aquatic systems can also be phrased in terms of continuous space, as opposed to the "compartment" approach of discrete spatial zones. In this case, the partial differential equations (which arise, for example, by taking the limit of Equation 7 as the control volume goes to zero) can be solved by finite difference or finite element numerical integration techniques. [Pg.34]

From these data, aquatic fate models construct outputs delineating exposure, fate, and persistence of the compound. In general, exposure can be determined as a time-course of chemical concentrations, as ultimate (steady-state) concentration distributions, or as statistical summaries of computed time-series. Fate of chemicals may mean either the distribution of the chemical among subsystems (e.g., fraction captured by benthic sediments), or a fractionation among transformation processes. The latter data can be used in sensitivity analyses to determine relative needs for accuracy and precision in chemical measurements. Persistence of the compound can be estimated from the time constants of the response of the system to chemical loadings. [Pg.35]

The characteristics of the applied models have been described in detail in the chapters Environmental Fate Models [50] and A Revision of Current Models for Environmental and Human Health Impact and Risk Assessment for Application to Emerging Chemicals [49] and only a brief overview is given here. Since each model has its own approach (i.e., QWASI is focused on the aquatic system), the combined results are expected to give a wider view with in-depth analyses for different aspects compared to just one model with its special characteristics. [Pg.351]

QWASI, the Quantitative Water, Air Sediment Interaction model by Mackay et al. [14] is a fugacity III model (Version 3.10, 2007) and it describes the fate of chemicals in aquatic systems, depending on direct discharge, inflow in rivers, and atmospheric deposition. Hence, this model addresses the local scale, as does the 2-FUN Tool. [Pg.354]

Hexachloroethane released to water or soil may volatilize into air or adsorb onto soil and sediments. Volatilization appears to be the major removal mechanism for hexachloroethane in surface waters (Howard 1989). The volatilization rate from aquatic systems depends on specific conditions, including adsorption to sediments, temperature, agitation, and air flow rate. Volatilization is expected to be rapid from turbulent shallow water, with a half-life of about 70 hours in a 2 m deep water body (Spanggord et al. 1985). A volatilization half-life of 15 hours for hexachloroethane in a model river 1 m deep, flowing 1 m/sec with a wind speed of 3 m/sec was calculated (Howard 1989). Measured half-lives of 40.7 and 45 minutes for hexachloroethane volatilization from dilute solutions at 25 C in a beaker 6.5 cm deep, stirred at 200 rpm, were reported (Dilling 1977 Dilling et al. 1975). Removal of 90% of the hexachloroethane required more than 120 minutes (Dilling et al. 1975). The relationship of these laboratory data to volatilization rates from natural waters is not clear (Callahan et al. 1979). [Pg.127]

Hudson, R. J. M. (1998). Modeling the fate of metals in aquatic systems the mechanistic basis of particle-water partitioning models, Crit. Rev. Anal. Chem., 28, 19-26. [Pg.198]

Campbell, P. G. C. (1995). Interactions between trace metal and aquatic organisms a critique of the free-ion activity model. In Metal Speciation and Bioavailability in Aquatic Systems, eds. Tessier, A. and Turner, D. R., Vol. 3, IUPAC Series on Analytical and Physical Chemistry of Environmental Systems, Series eds. Buffle, J. and van Leeuwen, H. P., John Wiley Sons, Ltd, Chichester, pp. 45-102. [Pg.198]

Physicochemical Parameters and Processes for Modelling the Biological Uptake of Trace Metals in Environmental (Aquatic) Systems... [Pg.445]


See other pages where Modelling Aquatic Systems is mentioned: [Pg.399]    [Pg.4730]    [Pg.67]    [Pg.78]    [Pg.189]    [Pg.399]    [Pg.4730]    [Pg.67]    [Pg.78]    [Pg.189]    [Pg.405]    [Pg.394]    [Pg.266]    [Pg.147]    [Pg.938]    [Pg.25]    [Pg.27]    [Pg.29]    [Pg.31]    [Pg.33]    [Pg.33]    [Pg.35]    [Pg.35]    [Pg.35]    [Pg.37]    [Pg.39]    [Pg.58]    [Pg.421]    [Pg.816]    [Pg.1347]    [Pg.185]   
See also in sourсe #XX -- [ Pg.121 ]




SEARCH



Aquatic modeling

Aquatic systems

Fate model aquatic systems

© 2024 chempedia.info