Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Antibodies sandwich immunoassays

The reverse capture autoantibody microarray is based on the dual-antibody sandwich immunoassay of enzyme-linked immunosorbent assay (ELISA) (see Fig. 1). The basic platform consists of a glass microarray slide arrayed with 1000 highly specific well-characterized monoclonal antibodies against 500 unique antigens. These antibodies are used to immobilize native proteins. Because the reagents used in the procedure are non-denaturing, antigens are... [Pg.176]

Interferon-y Specific antibodies Sandwich immunoassay with capture antibody immobilized on beads, colloidal gold as tracer Thermal lens microscope... [Pg.2451]

Kuno A, Dcehara Y, Tanaka Y, Saito K, Ito K, Tsumno C, Nagai S, Takahama Y, Mizokami M, Hirabayashi J, Naiimatsu H (2011) LecT-Hepa a triplex lectin-antibody sandwich immunoassay for estimating the progression dynamics of liver fibrosis assisted by a bedside clinical chemistry analyzer and an automated pretreatment machine. Clin Chim Acta 412 1767-1772... [Pg.121]

The microplate ELISA testis conducted in standard 96-well microplates. A microplate consists of a 12 X 8 grid of wells for test solutions. The three most widely used ELISA formats are immobilized antigen competitive immunoassay, immobilized antibody competitive immunoassay and sandwich immunoassay. " ... [Pg.625]

Figure 4 Sandwich immunoassay. A capture antibody (Y) is passively adsorbed on a solid phase. The target protein contained in the sample and the enzyme-labeled reporter antibody (Y-E) are added. Both the capture antibody and enzyme-labeled reporter antibody bind to the target protein at different sites, sandwiching it between the antibodies. Following a wash step, the substrate (<>) is added and colored product ( ) formed. The amount of colored product is directly proportional to the amount of target protein captured... Figure 4 Sandwich immunoassay. A capture antibody (Y) is passively adsorbed on a solid phase. The target protein contained in the sample and the enzyme-labeled reporter antibody (Y-E) are added. Both the capture antibody and enzyme-labeled reporter antibody bind to the target protein at different sites, sandwiching it between the antibodies. Following a wash step, the substrate (<>) is added and colored product ( ) formed. The amount of colored product is directly proportional to the amount of target protein captured...
As an alternative, extremely sensitive detection can be achieved with reporter antibody probes tagged with intensely SERS-active compounds or with enzymes that react with substrates to yield SERS-active products. These methods often involve sandwich immunoassay techniques, which increase the number of required steps but offer the advantages of excellent sensitivity and the potential for label multiplexing. For example, Nie and coworkers recently reported the simultaneous detection of two types of antigens in a... [Pg.248]

In a direct immunoassay the immobilized antibody binds to the corresponding antigen. The competitive immunoassay relies upon the competition of the analyte with a labelled analyte for antibody binding. These formats are widely used for high throughput affinity arrays. A sandwich immunoassay is based on the trapping or capture of the analyte by another antibody. In ELISA (enzyme linked immunosorbent assays) the second antibody is conjugated with an enzyme. The bound enzyme labelled antibody is detected by its ability to break down its substrate to a colored product. [Pg.481]

The most common use of protein microarrays is in immunoassays. In particular, antibody-based immunoassays are the main stream of diagnostic assays due to their specificity. The assay usually runs in a multiplexed mode where the antibodies or other capture agents are immobilized and then exposed to a biological sample. There are four immunoassay formats direct binding, sandwich (ELISA), competitive, and displacement. Direct-binding and sandwich assays are the most common. There are some reports on the use of competitive assays and displacement assays, which are usually associated with high surface area/volume systems [72-76],... [Pg.368]

Fig. 31 (A) Principle of a sandwich immunoassay using FDA particulate labels. The analyte is first immobilized by the capture antibody preadsorbed on the solid phase (a) and then exposed to antibody-coated microparticle labels (b). Every microparticle contains 108 FDA molecules. High signal amplification is achieved after solubilisation, release, and conversion of the precursor FDA into fluorescein molecules by the addition of DMSO and NaOH (c). (B) Calibration curves of IgG-FDA microcrystal labels with increasing surface coverage of detector antibody (a-d) compared with direct FITC-labeled detector antibody (e). The fluorescence signals increase with increasing IgG concentration. FDA microcrystals with a high IgG surface coverage (c,d) perform better than those with lower surface coverage (a,b). (Reprinted with permission from [189]. Copyright 2002 American Chemical Society)... Fig. 31 (A) Principle of a sandwich immunoassay using FDA particulate labels. The analyte is first immobilized by the capture antibody preadsorbed on the solid phase (a) and then exposed to antibody-coated microparticle labels (b). Every microparticle contains 108 FDA molecules. High signal amplification is achieved after solubilisation, release, and conversion of the precursor FDA into fluorescein molecules by the addition of DMSO and NaOH (c). (B) Calibration curves of IgG-FDA microcrystal labels with increasing surface coverage of detector antibody (a-d) compared with direct FITC-labeled detector antibody (e). The fluorescence signals increase with increasing IgG concentration. FDA microcrystals with a high IgG surface coverage (c,d) perform better than those with lower surface coverage (a,b). (Reprinted with permission from [189]. Copyright 2002 American Chemical Society)...
Tl. Taddei-Peters, W. C., Butman, B. T., Jones, G. R., Venetta, T. M., Macomber, P. F., and Ransom, J. H., Quantification of lipoprotein(a) particles containing various apolipoprotein(a) isoforms by a monoclonal anti apo(a) capture antibody and a polyclonal anti-apolipoprotein B detection antibody sandwich enzyme immunoassay. Clin. Chem. (Winston-Salem, NC) 39, 1382-1389 (1993). [Pg.131]

The detection of flu viruses via a fluorescent sandwich immunoassay was reported by Bucher.(10) However, the method sensitivity was too low for direct detection of the virus. A novel sandwich immunoassay was described by Ogcr((lff7 for the detection of Botulinum Toxin A. Antibodies specific for Clostridium botulinum were covalently attached to the surface of a tapered fiber. After the capture of the antigen, a sandwich was formed with a rhodamine-labeled anti-toxin IgG, and the evanescent wave was measured. The assay was highly specific with detection limits near 5 ppb. [Pg.213]

An NIR biosensor coupled with an NIR fluorescent sandwich immunoassay has been developed. 109 The capture antibody was immobilized on the distal end of an optical fiber sensor. The probe was incubated in the corresponding antigen with consecutive incubation in an NIR-labeled sandwich antibody. The resulting NIR-labeled antibody sandwich was excited with the NIR beam of a laser diode, and a fluorescent signal that was directly proportional to the bound antigen was emitted. The sensitivity of the technique increased with increasing amounts of immobilized receptor. There are several factors involved in the preparation of the sandwich type biosensor. A schematic preparation of the sandwich optical fiber is shown in Figure 7.14. [Pg.213]

The utilization of lAC in analytical methods has received increasing retention in recent years [23,24], Of particular interest is the use of immobilized antibody columns in performing immunoassays, a technique known as a chromatographic immunoassay or flow-injection immunoassay. This approach has already been reported in a number of formats such as those involving simple analyte adsorption/desorption, sandwich immunoassays, competitive binding immunoassays, and multianalyte methods (see Figure 13,9) [23,24,73,74], Typical advantages of these methods include decreased analysis times and improved precision versus manual immunoassays. [Pg.374]

Nl. Nagata, S., Tsutsumi, T., Yoshida, R, and Ueno, Y, A new type sandwich immunoassay for microcystin Production of monoclonal antibodies specific to the immune complex formed by microcystin and an anti-microcystin monoclonal antibody. Natural Toxins 1, 49-55 (1999). [Pg.169]

T4. Tanaka, K., Kohno, T, Hashida, S., and Ishikawa, E., Novel and sensitive noncompetitive (two-site) enzyme immunoassay for h tens with amino groups. J. Clin. Lab. Anal. 4,208—212(1990). T5. Towbin, H., Motz, J., Oroszlan, R, and Zingel, O., Sandwich immunoassay for the hapten angiotensin II. A novel assay principle based on antibodies against immune complexes. J. Immunol. Methods 181, 167-176 (1995). [Pg.170]

The principle approach to immunoassay is illustrated in Figure 1, which shows a basic sandwich immunoassay. In this type of assay, an antibody to the analyte to be measured is immobilized onto a solid surface, such as a bead or a plastic (microtiter) plate. The test sample suspected of containing the analyte is mixed with the antibody beads or placed in the plastic plate, resulting in the formation of the antibody—analyte complex. A second antibody which carries an indicator reagent is then added to the mixture. This indicator may be a radioisotope, for RIA an enzyme, for EIA or a fluorophore, for fluorescence immunoassay (FIA). The antibody-indicator binds to the first antibody—analyte complex, free second antibody-indicator is washed away, and the two-antibody—analyte complex is quantified using a method compatible with the indicator reagent, such as quantifying radioactivity or enzyme-mediated color formation (see Automated instrumentation, clinical chemistry). [Pg.22]

IgG (mouse) Sandwich immunoassay using SPCE-surface-immobilised anti-IgG antibody FLA amperometric, reduction of enzymatically generated iodine o.ov 30-700 ngmU1 3 ngmU1 Gao et al. [81]... [Pg.511]

Interleukin 6 (IL-6) Sandwich immunoassay using HRP-labelled antibody with TMB substrate FLA, amperometry... [Pg.514]


See other pages where Antibodies sandwich immunoassays is mentioned: [Pg.446]    [Pg.446]    [Pg.22]    [Pg.254]    [Pg.31]    [Pg.33]    [Pg.628]    [Pg.313]    [Pg.248]    [Pg.249]    [Pg.443]    [Pg.143]    [Pg.144]    [Pg.154]    [Pg.272]    [Pg.274]    [Pg.474]    [Pg.475]    [Pg.80]    [Pg.212]    [Pg.211]    [Pg.156]    [Pg.210]    [Pg.10]    [Pg.15]    [Pg.16]    [Pg.200]    [Pg.207]    [Pg.266]    [Pg.326]    [Pg.358]    [Pg.387]    [Pg.511]   
See also in sourсe #XX -- [ Pg.48 ]




SEARCH



Immunoassay sandwich

© 2024 chempedia.info