Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Anodic reaction potential polarization

While the above sections provide some useful and converging data on the anodic stability of a variety of nonaqueous systems, there is still a lot of work to be done in this area. In most cases, the anodic reactions of polar aprotic systems and their mechanisms are not clear. In addition, the onset potentials for the oxidation reactions of many systems depend on the salt, the electrode materials and impuri-... [Pg.215]

A reference electrode scanned along the metal surface will measure the series of (E"x)n and (E"M)n interface potentials. From these values, solution potentials (t))s) at the metal/solution interface may be calculated (< )s = -E") and presented as in Fig. 4.6. When the anodic and cathodic sites are microscopic relative to the size and position of the reference electrode, identity of the anodic and cathodic sites on a macroscale is lost, and a single mixed or corrosion potential, Ecorr, is measured as discussed previously. There is essentially a uniform flux of metal ions from the surface, and cathodic reactants to the surface, which constitute anodic and cathodic currents. Since the relative areas to which these currents apply usually are not known, the total area is taken as the effective area for each reaction. It is these currents, however, that mutually polarize the anodic reaction potential from E M up to Ecorr and the cathodic reaction potential from E x down to Ecorr. [Pg.146]

The behavior in the regions of moderate anodic or cathodic polarization depends on the relative positions of potentials E and Eq, which in turn depend on the relative values of constants and k 2- For E which are more positive than Eq (Fig. 13.1a), relation (13.20) for the cathodic CD remains valid at all values of cathodic polarization (except for the region of low values where the reverse reaction must be taken into account). At moderate values of anodic polarization, inequalities (la) and (2b) are found to be valid at potentials more negative than E, while step 2 becomes rate determining, which is the second step along the reaction path. In this case [see Eq. (13.10)], we have... [Pg.224]

Thus, in the region of very high anodic or cathodic polarization, the RDS is always the first step in the reaction path. The transfer coefficient of the full reaction which is equal to that of this step is always smaller than unity (for a one-electron RDS), while slope i in the Tafel equation is always larger than 0.06 V. When the potential is outside the region of low polarization, a section will appear in the polarization curve at intermediate values of anodic or cathodic polarization where the transfer coefficient is larger than unity and b is smaller than 0.06 V. This indicates that in this region the step that is second in the reaction path is rate determining. [Pg.226]

Based upon the concepts of the adsorption of the anode reaction product, the share of the anodic curve, on which the carbamide oxidation processes is reflected as a wave, can be explained. It may be assumed that the adsorption of the reaction product inhibits the direct oxidation of carbamide. To verify this conclusion, the anode was polarized to the electrolysis product formation potential, and the reverse sweep was stopped before the electrolysis product was reduced at the electrode. Then the carbamide oxidation process was completely inhibited on the subsequent forward sweep, and the curve exhibited only a current increase at the chlorine ion oxidation potential. [Pg.441]

Fig. 7-4. Anodic and cathodic polarization curves of an electrode reaction E= electrode potential ... Fig. 7-4. Anodic and cathodic polarization curves of an electrode reaction E= electrode potential ...
Polarization in the cathodic direction accelerates the cathodic reaction and is called cathodic polarization polarization in the anodic direction accelerates the anodic reaction and is called anodic polarization. In Fig. 7-4 the polarization curve is cathodic at potentials more negative and is anodic at potentials more positive than the equilibrium potential E. In electrode reaction kinetics the magnitude of polarization (the potential change in polarization) is called the overvoltage or overpotential and conventionally expressed by symbol ii, which is negative in cathodic polarization and positive in anodic polarization. [Pg.219]

Figures 8-5 and 8-6 are energy diagrams, as functions of electron energy e imder anodic and cathodic polarization, respectively, for the electron state density Dyf.t) in the metal electrode the electron state density AtEDox(c) in the redox particles and the differential reaction current ((e). From these figures it is revealed that most of the reaction current of redox electron transfer occurs in a narrow range of energy centered at the Fermi level of metal electrode even in the state of polarization. Further, polarization of the electrode potential causes the ratio to change between the occupied electron state density Dazc/itnu md the imoccupied... Figures 8-5 and 8-6 are energy diagrams, as functions of electron energy e imder anodic and cathodic polarization, respectively, for the electron state density Dyf.t) in the metal electrode the electron state density AtEDox(c) in the redox particles and the differential reaction current ((e). From these figures it is revealed that most of the reaction current of redox electron transfer occurs in a narrow range of energy centered at the Fermi level of metal electrode even in the state of polarization. Further, polarization of the electrode potential causes the ratio to change between the occupied electron state density Dazc/itnu md the imoccupied...
Fig. 10-14. Energy levels and polarization curves (current vs. potential) for anodic transfer ofphotoexdted holes in oxygen reaction (2 HgO. -t- 4h O24 4 H. ) on a metal electrode and on an n-type semiconductor electrode j = anodic reaction current ep(02 20)- Fermi level of oxygen electrode reaction dCpi, = gain of photoenergy q = potential for the onset of anodic photoexdted ox en reacti . 4 pi, (=-Ae.. le) = shift of potential for the onset of anodic oxygen reaction from equilibrium oxygen potential in the negative direction due to gain of photoenergy in an n-type electrode Eib = flat band potential of an n-type electrode. Fig. 10-14. Energy levels and polarization curves (current vs. potential) for anodic transfer ofphotoexdted holes in oxygen reaction (2 HgO. -t- 4h O24 4 H. ) on a metal electrode and on an n-type semiconductor electrode j = anodic reaction current ep(02 20)- Fermi level of oxygen electrode reaction dCpi, = gain of photoenergy q = potential for the onset of anodic photoexdted ox en reacti<H> . 4 pi, (=-Ae.. le) = shift of potential for the onset of anodic oxygen reaction from equilibrium oxygen potential in the negative direction due to gain of photoenergy in an n-type electrode Eib = flat band potential of an n-type electrode.
The potential, E, for the onset of the photoexdted reaction relative to the equilibrium electrode potential E of the same reaction can also be derived in a kinetics-based approach [Memming, 1987]. Here, we consider the transfer of anodic holes (minority charge carriers) at an n-type semiconductor electrode at which the hole transfer is in quasi-equilibrium then, the anodic reaction rate is controlled by the photogeneration and transport of holes in the n-type semiconductor electrode. The current of hole transport, has been given by Eqn. 8-71 as a function of polarization ( - ,) as shown in Eqn. 10-20 ... [Pg.342]

Fig. 10-28. Polarization curves for cell reactions of photoelectrolytic decomposition of water at a photoezcited n-type anode and at a metal cathode solid curve M = cathodic polarization curve of hydrogen evolution at metal cathode solid curve n-SC = anodic polarization curve of oxygen evolution at photoezcited n-type anode (Fermi level versus current curve) dashed curve p-SC = quasi-Fermi level of interfadal holes as a ftmction of anodic reaction current at photoezcited n-type anode (anodic polarization curve r re-sented by interfacial hole level) = electrode potential of two operating electrodes in a photoelectrolytic cell p. sc = inverse overvoltage of generation and transport ofphotoezcited holes in an n-type anode. Fig. 10-28. Polarization curves for cell reactions of photoelectrolytic decomposition of water at a photoezcited n-type anode and at a metal cathode solid curve M = cathodic polarization curve of hydrogen evolution at metal cathode solid curve n-SC = anodic polarization curve of oxygen evolution at photoezcited n-type anode (Fermi level versus current curve) dashed curve p-SC = quasi-Fermi level of interfadal holes as a ftmction of anodic reaction current at photoezcited n-type anode (anodic polarization curve r re-sented by interfacial hole level) = electrode potential of two operating electrodes in a photoelectrolytic cell p. sc = inverse overvoltage of generation and transport ofphotoezcited holes in an n-type anode.
The cathodic reactions are normally slower than the anodic reactions and are therefore the rate-determining steps thus the driving force of the corrosion cell reaction (and the overall rate of corrosion) can be slowed down by reducing the difference in potential at the cathode (cathodic polarization). [Pg.91]

Anode reaction. The expression inert electrode is often used to indicate that we may neglect reaction of the electrode itself. This can be due to the high value of its electrode potential or because of polarization effects related to the preparation of the electrode surface. The remaining possible anode reactions are the reverses of the following ... [Pg.339]

Figure 8 Current-potential relationship for a corrosion process, showing the separation of the anodic and cathodic half-reactions by polarization to positive and negative potentials, respectively. Figure 8 Current-potential relationship for a corrosion process, showing the separation of the anodic and cathodic half-reactions by polarization to positive and negative potentials, respectively.

See other pages where Anodic reaction potential polarization is mentioned: [Pg.2430]    [Pg.138]    [Pg.400]    [Pg.226]    [Pg.305]    [Pg.18]    [Pg.19]    [Pg.52]    [Pg.151]    [Pg.220]    [Pg.370]    [Pg.216]    [Pg.142]    [Pg.510]    [Pg.205]    [Pg.334]    [Pg.164]    [Pg.183]    [Pg.152]    [Pg.159]    [Pg.2184]    [Pg.2185]    [Pg.329]    [Pg.60]    [Pg.178]    [Pg.255]    [Pg.166]    [Pg.174]    [Pg.210]    [Pg.210]    [Pg.2694]    [Pg.2695]    [Pg.654]   
See also in sourсe #XX -- [ Pg.146 ]




SEARCH



Anode anodic polarization

Anode polarization

Anode potential

Anode reactions

Anodic reaction potential

Anodic reactions

Polarization potential

Polarized potential

Polarizing potential

Reaction polarity

© 2024 chempedia.info