Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Anisotropy proton

NMR can, in principle, provide complementary information on motional processes in liquid crystals. The dipole-dipole interaction between a C-H pair and the quadrupolar interaction when the proton is replaced with a deuteron share the same principal interaction axis. In the case where the carbon is not directly bonded to a proton, there is still dipole-dipole relaxation by nearby protons, but it is also necessary to include an additional relaxation mechanism, the modulation of the chemical shift anisotropy. Proton spin decoupling is necessary to give well-resolved chemically shifted lines in the mesophase of liquid crystals. Furthermore, it is not practical to determine individual spectral density parameters from measured relaxation rates. Proton-proton dipolar interactions may not be ignored even when observation is exclusively confined to the resonant spin [5.31]. This is because proton relaxation causes population flow among the proton spin levels through dipolar (or scalar) coupling. As a consequence, cross-... [Pg.128]

Small molecules in low viscosity solutions have, typically, rotational correlation times of a few tens of picoseconds, which means that the extreme narrowing conditions usually prevail. As a consequence, the interpretation of certain relaxation parameters, such as carbon-13 and NOE for proton-bearing carbons, is very simple. Basically, tlie DCC for a directly bonded CH pair can be assumed to be known and the experiments yield a value of the correlation time, t. One interesting application of the measurement of is to follow its variation with the site in the molecule (motional anisotropy), with temperature (the correlation... [Pg.1513]

Tjandra N and Bax A 1997 Solution NMR measurement of amide proton chemical shift anisotropy in N-15-enriched proteins. Correlation with hydrogen bond length J. Am. Chem. Soc. 119 8076-82... [Pg.1518]

Representative chemical shifts from the large amount of available data on isothiazoles are included in Table 4. The chemical shifts of the ring hydrogens depend on electron density, ring currents and substituent anisotropies, and substituent effects can usually be predicted, at least qualitatively, by comparison with other aromatic systems. The resonance of H(5) is usually at a lower field than that of H(3) but in some cases this order is reversed. As is discussed later (Section 4.17.3.4) the chemical shift of H(5) is more sensitive to substitution in the 4-position than is that of H(3), and it is also worth noting that the resonance of H(5) is shifted downfield (typically 0.5 p.p.m.) when DMSO is used as solvent, a reflection of the ability of this hydrogen atom to interact with proton acceptors. This matter is discussed again in Section 4.17.3.7. [Pg.136]

Figure 1 The principal sources of structural data are the NOEs, which give information on the spatial proximity d of protons coupling constants, which give information on dihedral angles < i and residual dipolar couplings, which give information on the relative orientation 0 of a bond vector with respect to the molecule (to the magnetic anisotropy tensor or an alignment tensor). Protons are shown as spheres. The dashed line indicates a coordinate system rigidly attached to the molecule. Figure 1 The principal sources of structural data are the NOEs, which give information on the spatial proximity d of protons coupling constants, which give information on dihedral angles < i and residual dipolar couplings, which give information on the relative orientation 0 of a bond vector with respect to the molecule (to the magnetic anisotropy tensor or an alignment tensor). Protons are shown as spheres. The dashed line indicates a coordinate system rigidly attached to the molecule.
Compound 68 can also be obtained by an acid-catalyzed cyclization of 42, which was prepared by the Michael addition reaction of 39 to mesityl oxide as shown in Section IV.A. As for the product 69, the presence of the tosyloxy group at the 5 position instead of the 6 position is determined, utilizing the anisotropy effect of the 1-acetyl group to the C-7 proton, by comparing its H NMR spectrum with that of 70, obtained in 69% yield by the treatment of 69 with NaH and AcCl. [Pg.114]

Rao and Symons49 studied the formation of radicals in y-radiolysis of dilute solutions of dimethyl sulfoxide in fluorotrichloromethane. By ESR studies they found the radical cation (CH3)2SOt whose ESR spectrum show considerable g anisotropy and small methyl proton hyperfine coupling. [Pg.904]

Kashiwagi et al.10) determined the second moment anisotropy for the one-way drawn polyethylene terephthalate sheets discussed above. The three lattice sums S00, S2q and S4o were calculated from the crystal structure determination of Daubeny et al., the proton positions being calculated on the basis of known bond angles and lengths. The isotropic lattice sum S00 was adjusted to a value consistent with the measured isotropic second moment of 10.3G2. The values for P200, P220 etc. were then used to predict the optical anisotropy. The predicted refractive indices for the sheets of draw ratio 2 1 and 2.5 1 are shown in Fig. 10, together with the experimental... [Pg.108]

With these assignments at hand the analysis of the hyperfine shifts became possible. An Fe(III) in tetrahedral structures of iron-sulfur proteins has a high-spin electronic structure, with negligible magnetic anisotropy. The hyperfine shifts of the protons influenced by the Fe(III) are essentially Fermi contact in origin 21, 22). An Fe(II), on the other hand, has four unpaired electrons and there may be some magnetic anisotropy, giving rise to pseudo-contact shifts. In addition, there is a quintet state at a few hundred cm which may complicate the analysis of hyperfine shifts, but the main contribution to hyperfine shifts is still from the contact shifts 21, 22). [Pg.252]

The process of spin-lattice relaxation involves the transfer of magnetization between the magnetic nuclei (spins) and their environment (the lattice). The rate at which this transfer of energy occurs is the spin-lattice relaxation-rate (/ , in s ). The inverse of this quantity is the spin-lattice relaxation-time (Ti, in s), which is the experimentally determinable parameter. In principle, this energy interchange can be mediated by several different mechanisms, including dipole-dipole interactions, chemical-shift anisotropy, and spin-rotation interactions. For protons, as will be seen later, the dominant relaxation-mechanism for energy transfer is usually the intramolecular dipole-dipole interaction. [Pg.128]

This simple relaxation theory becomes invalid, however, if motional anisotropy, or internal motions, or both, are involved. Then, the rotational correlation-time in Eq. 30 is an effective correlation-time, containing contributions from reorientation about the principal axes of the rotational-diffusion tensor. In order to separate these contributions, a physical model to describe the manner by which a molecule tumbles is required. Complete expressions for intramolecular, dipolar relaxation-rates for the three classes of spherical, axially symmetric, and asymmetric top molecules have been evaluated by Werbelow and Grant, in order to incorporate into the relaxation theory the appropriate rotational-diffusion model developed by Woess-ner. Methyl internal motion has been treated in a few instances, by using the equations of Woessner and coworkers to describe internal rotation superimposed on the overall, molecular tumbling. Nevertheless, if motional anisotropy is present, it is wiser not to attempt a quantitative determination of interproton distances from measured, proton relaxation-rates, although semiquantitative conclusions are probably justified by neglecting motional anisotropy, as will be seen in the following Section. [Pg.137]

Carotenoid radical intermediates generated electrochemically, chemically, and photochemically in solutions, on oxide surfaces, and in mesoporous materials have been studied by a variety of advanced EPR techniques such as pulsed EPR, ESEEM, ENDOR, HYSCORE, and a multifrequency high-held EPR combined with EPR spin trapping and DFT calculations. EPR spectroscopy is a powerful tool to characterize carotenoid radicals to resolve -anisotropy (HF-EPR), anisotropic coupling constants due to a-protons (CW, pulsed ENDOR, HYSCORE), to determine distances between carotenoid radical and electron acceptor site (ESEEM, relaxation enhancement). [Pg.185]

Note that the lack of rotation about the double bond means that E and Z isomers are distinct entities in the same way that cis and trans isomers are distinct in conventional alkenes. It is not really feasible to give a comprehensive guide to the chemical shifts of these protons but expect them to be somewhat lower field (approx. 1 ppm) than for comparable alkenes, with chemical shifts being driven largely by the anisotropy of the substituents. [Pg.63]

How close they are to each other, or how far apart, is not something that can be easily estimated as it depends on the through-space interactions (anisotropies) of both protons with all the other groups in the molecule. That having been said, the two doublets are likely to be within 1 ppm of each other and... [Pg.67]


See other pages where Anisotropy proton is mentioned: [Pg.1445]    [Pg.1515]    [Pg.1562]    [Pg.2554]    [Pg.379]    [Pg.384]    [Pg.67]    [Pg.70]    [Pg.405]    [Pg.220]    [Pg.33]    [Pg.51]    [Pg.134]    [Pg.253]    [Pg.184]    [Pg.185]    [Pg.151]    [Pg.63]    [Pg.199]    [Pg.395]    [Pg.395]    [Pg.395]    [Pg.460]    [Pg.209]    [Pg.211]    [Pg.131]    [Pg.160]    [Pg.395]    [Pg.395]    [Pg.395]    [Pg.460]    [Pg.132]    [Pg.160]    [Pg.175]    [Pg.62]   
See also in sourсe #XX -- [ Pg.496 , Pg.497 ]




SEARCH



© 2024 chempedia.info