Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Analyses chain structure

Chain Structure. The chemical composition of poly (vinyhdene chloride) has been confirmed by various techniques, including elemental analysis, x-ray diffraction analysis, degradation studies, and in, Raman, and nmr spectroscopy. The polymer chain is made up of vinyhdene chloride units added head-to-tail ... [Pg.430]

The Seismic Safety Margins Research Program developed a computer code called SMACS (Seismic Methodology Analysis Chain with Statistics) for calculating the seismic responses of structures, systems, and components. This code links the seismic input as ensembles of acceleration time histories with the calculations of the soil-structure interactions, the responses of major structures, and the responses of subsystems. Since uses a multi-support approach to perform the time-history response calculations for piping subsystems, the correlations between component responses can be handled explicitly. SMACS is an example of the codes that are available for calculating seismic response for PSA purposes. [Pg.192]

As a result of thermodynamic analysis it is shown that protein bonding to carboxylic CP exhibiting a local internal chain structure is determined by the entropy factor, whereas, if the arrangement of flexible chain parts on the protein globule is possible, the energetic component predominates. [Pg.30]

Besides synthesis, current basic research on conducting polymers is concentrated on structural analysis. Structural parameters — e.g. regularity and homogeneity of chain structures, but also chain length — play an important role in our understanding of the properties of such materials. Research on electropolymerized polymers has concentrated on polypyrrole and polythiophene in particular and, more recently, on polyaniline as well, while of the chemically produced materials polyacetylene stih attracts greatest interest. Spectroscopic methods have proved particularly suitable for characterizing structural properties These comprise surface techniques such as XPS, AES or ATR, on the one hand, and the usual methods of structural analysis, such as NMR, ESR and X-ray diffraction techniques, on the other hand. [Pg.16]

The statistical distribution of r values for long polymer chains and the influence of chain structure and hindrance to rotation about chain bonds on its root-mean-square value will be the topics of primary concern in the present chapter. We thus enter upon the second major application of statistical methods to polymer problems, the first of these having been discussed in the two chapters preceding. Quite apart from whatever intrinsic interest may be attached to the polymer chain configuration problem, its analysis is essential for the interpretation of rubberlike elasticity and of dilute solution properties, both hydrodynamic and thermodynamic, of polymers. These problems will be dealt with in following chapters. The content of the present... [Pg.401]

A number of publications have discussed the characterization of the substituted polymers (4.5,7,8,9). However, because of the poor hydrolytic stability of the chloropolymer, characterization of it has been rather difficult and slow to develop, and the literature is rather scant in this regard (10,ip. Conclusions about the struct are and polymerization mechanism of the chloropolymer have sometimes been drawn from the analysis of the substituted polymers. These conclusions, of course, assume that there is very little, if any, change of the chloropol pier chain structure during the substitution reaction. It was felt that a direct analysis of the chloropolymer may lead to a more accurate understanding of both the polymer structure and the polymerization mechanism. [Pg.255]

Akiyama, T. Sugimoto, T. Matsumoto, Y. Meshitsuka, G. Erythrolthreo ratio of [i-O-4 structures as an important structural characteristic of lignin. I improvement of ozonation method for the quantitative analysis of lignin side-chain structure. J. Wood Sci. 2002, 48, 210-215. [Pg.417]

The application of partial relaxation FTNMR in the determination of unreacted monomers, solvent, water, and additives in polymers, polymer degradation, and functional group and chain structure characterisation has been reviewed [255]. Hummel [95] underestimates the contribution of NMR to polymer/additive analysis. [Pg.336]

Table 2.2 The 20 commonly occurring amino acids. They may be subdivided into five groups on the basis of side-chain structure. Their three- and one-letter abbreviations are also listed (one-letter abbreviations are generally used only when compiling extended seguence data, mainly to minimize writing space and effort). In addition to their individual molecular masses, the percentage occurrence of each amino acid in an average protein is also presented. These data were generated from seguence analysis of over 1000 different proteins... Table 2.2 The 20 commonly occurring amino acids. They may be subdivided into five groups on the basis of side-chain structure. Their three- and one-letter abbreviations are also listed (one-letter abbreviations are generally used only when compiling extended seguence data, mainly to minimize writing space and effort). In addition to their individual molecular masses, the percentage occurrence of each amino acid in an average protein is also presented. These data were generated from seguence analysis of over 1000 different proteins...
The Eyring analysis does not explicity take chain structures into account, so its molecular picture is not obviously applicable to polymer systems. It also does not appear to predict normal stress differences in shear flow. Consequently, the mechanism of shear-rate dependence and the physical interpretation of the characteristic time t0 are unclear, as are their relationships to molecular structure and to cooperative configurational relaxation as reflected by the linear viscoelastic behavior. At the present time it is uncertain whether the agreement with experiment is simply fortuitous, or whether it signifies some kind of underlying unity in the shear rate dependence of concentrated systems of identical particles, regardless of their structure and the mechanism of interaction. [Pg.144]

The phenomenon of increased hardness occurs principally in minerals of sheet and chain structures, which link together through the cations (silicates and aluminosilicates, as well as hydrated sheet minerals, such as glauconite, melilite and gypsum—M ranging from 0 to about 1.25), and also in minerals of skeletal structures (borates, phosphates, sulphates, nitrates, carbonates, such as calcite, dolomite and others—Ah from 0 to about 1.15). For this reason, the hardness analysis of minerals with weak bonds demands consideration of the fact that just as the basic crystallo-chemical factors, so is hardness influenced by the form of domains (component parts of structures) in all anisodesmic minerals of chain, sheet or skeletal structure. Depending on the form of domain (and also according... [Pg.20]

Such normal vibration analyses have been applied to the spectra of macromolecules to only a limited extent. In the first place, the only structure which has been analyzed in detail is that of the planar zig-zag chain of CHg groups, i.e., polyethylene. Neither substituted planar zig-zag chains nor the helical chain structures characteristic of many polymers [Bunn and Holmes (28)] have been submitted to such a theoretical analysis. In the second place, even for the case of polyethylene the answers are not in all instances unambiguous. Different assumptions as to the nature of the force field, and lack of knowledge of some of the force constants, has led to varying predictions of band positions in the observed spectrum. For the identification of certain modes, viz., those which retain the characteristics of separable group frequencies, such an analysis is not of primary importance, but for knowledge of skeletal frequencies and of interactions... [Pg.87]

The analysis of the spectrum of isotactic polystyrene is in many respects similar to that of isotactic polypropylene. Both chain structures... [Pg.143]


See other pages where Analyses chain structure is mentioned: [Pg.6]    [Pg.114]    [Pg.349]    [Pg.127]    [Pg.725]    [Pg.115]    [Pg.16]    [Pg.271]    [Pg.227]    [Pg.310]    [Pg.274]    [Pg.166]    [Pg.782]    [Pg.239]    [Pg.32]    [Pg.71]    [Pg.296]    [Pg.588]    [Pg.37]    [Pg.154]    [Pg.275]    [Pg.18]    [Pg.348]    [Pg.142]    [Pg.350]    [Pg.693]    [Pg.163]    [Pg.340]    [Pg.38]    [Pg.71]    [Pg.413]    [Pg.232]    [Pg.88]    [Pg.20]   
See also in sourсe #XX -- [ Pg.31 , Pg.45 ]




SEARCH



Carbohydrate chain structure chemical analysis

Carbohydrate chain structure enzymic analysis

Chain structures

© 2024 chempedia.info