Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ammonium sulfonate complexes

The Pt-catalyzed hydrosilylation of trimethyl silane and alkenols or alkenyl-polyethers lead to nonionic silane surfactants, whereas the addition of allylglycidyl ether to trimethylsilane results in a precursor for ionic derivatives. The epoxy group is highly reactive towards nucleophilic agents and can be easily transformed into quaternary ammonium, betaine, or sulfonate complexes. Additionally, cation-anion complexes can be formed by the transformation of two equivalents of epoxy silane with one equivalent of trialkyl ammonium hydrogen sulfite. The reaction of hydroxyalkyltrimethylsilane... [Pg.505]

Petroleum Sulfonates Products of the refining of selected petroleum fractions with concentrated sulfuric acid or oleum, in the production of white oils. Metal or ammonium salts of sulfonated complex cycloaliphatic and aromatic hydrocarbons. [Pg.10]

Taurine is generally prepared from ox bile1 or the large muscle of the abalone.2 It has been synthesized from isethionic add through chloroethanesulfonic acid followed by the action of aqueous ammonia 3 from ethyleneimine and sulfur dioxide 4 from 2-mercaptothiazoline by oxidation with bromine water 5 from bromoethylamine and ammonium sulfite 6 and from acetaldehyde by a complex set of reactions involving sulfonation, formation of the aldehyde ammonia and the imido sulfonic add and finally reduction.7 The method given in the procedure has recently appeared in the literature.8 9... [Pg.113]

Apart from complex formation involving metal ions (as discussed in Chapter 4), crown ethers have been shown to associate with a variety of both charged and uncharged guest molecules. Typical guests include ammonium salts, the guanidinium ion, diazonium salts, water, alcohols, amines, molecular halogens, substituted hydrazines, p-toluene sulfonic acid, phenols, thiols and nitriles. [Pg.138]

Nowadays we look with other eyes at organometallic compounds the family of which has expanded enormously. Some members of this family are soluble in water due to their ionic nature the legions of anionic carbonylmetallates (e.g. [Ni(CN)(CO)3] ) and cationic bisphosphine Rh-chelate complexes (e.g. [Rh(BDPP)(COD)] ) just come to mind. Others obtain their solubility in water from the well soluble ligands they contain these can be ionic (sulfonate, carboxylate, phosphonate, ammonium, phosphonium etc. derivatives) or neutral, such as the ligands with polyoxyethylene chains or with a modified urotropin structure. [Pg.9]

Absorption of some highly ionized compounds (e.g., sulfonic acids and quaternary ammonium compounds) from the gastrointestinal tract cannot be explained in terms of the transport mechanisms discussed earUer. These compounds are known to penetrate the Upid membrane despite their low Upid-water partition coefficients. It is postulated that these highly lipophobic drugs combine reversibly with such endogenous compounds as mucin in the gastrointestinal lumen, forming neutral ion pair complexes it is this neutral complex that penetrates the Upid membrane by passive diffusion. [Pg.24]

General Order of Rate Constants. The rate constants of electrophilic reactions of aromatic ligands and their metal complexes fall in the order fo, > kML > kffL. The difference between these rate constants becomes greater as the activity of the attacking reagent decreases. When L is a phenolate, HL is the phenol when L is an amine, HL is the corresponding ammonium derivative. The possible synthetic applications of this sequence can be appreciated from the fact that 8-hydroxyquinoline is usually sulfonated with 15 to 30% oleum, while its copper (II) complex can be readily sulfonated in 70% sulfuric add (5). [Pg.157]

One of the first compounds to be introduced to the clinic, aztreonam (40-9), has been produced by total synthesis. Constmction of the chiral azetidone starts with amide formation of L-threonine (40-1) via its acid chloride treatment with ammonia leads to the corresponding amide (40-2). The primary amino group in that product is then protected as its carbobenzyloxy derivative (40-3). Reaction of that product with methanesulfonyl chloride affords the mesylate (40-4). Treatment of that intermediate with the pyridine sulfur trioxide complex leads to the formation of the A -sulfonated amide (40-5). Potassium bicarbonate is sufficiently basic to ionize the very acidic proton on the amide the resulting anion then displaces the adjacent mesylate to form the desired azetidone the product is isolated as its tetrabutyl ammonium salt (40-6). Catalytic hydrogenation over palladium removes the carbobenzyloxy protecting group to afford the free primary amine (40-7). The... [Pg.572]


See other pages where Ammonium sulfonate complexes is mentioned: [Pg.85]    [Pg.85]    [Pg.226]    [Pg.189]    [Pg.204]    [Pg.138]    [Pg.214]    [Pg.221]    [Pg.171]    [Pg.479]    [Pg.111]    [Pg.35]    [Pg.1457]    [Pg.77]    [Pg.42]    [Pg.24]    [Pg.64]    [Pg.9]    [Pg.149]    [Pg.769]    [Pg.389]    [Pg.396]    [Pg.398]    [Pg.1095]    [Pg.25]    [Pg.9]    [Pg.1095]    [Pg.200]    [Pg.82]    [Pg.17]    [Pg.148]    [Pg.141]    [Pg.69]    [Pg.499]    [Pg.126]    [Pg.145]    [Pg.112]    [Pg.63]    [Pg.351]    [Pg.636]    [Pg.585]   
See also in sourсe #XX -- [ Pg.85 ]




SEARCH



Ammonium complex

Ammonium sulfonate

Sulfone complexes

© 2024 chempedia.info