Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ammonia synthesis operating conditions

SCFs will find applications in high cost areas such as fine chemical production. Having said that, marketing can also be an issue. For example, whilst decaffeina-tion of coffee with dichloromethane is possible, the use of scCC>2 can be said to be natural Industrial applications of SCFs have been around for a long time. Decaffeination of coffee is perhaps the use that is best known [16], but of course the Born-Haber process for ammonia synthesis operates under supercritical conditions as does low density polyethylene (LDPE) synthesis which is carried out in supercritical ethene [17]. [Pg.137]

Alkali-promoted Ru-based catalysts are expected to become the second generation NHs synthesis catalysts [1]. In 1992 the 600 ton/day Ocelot Ammonia Plant started to produce NH3 with promoted Ru catalysts supported on carbon based on the Kellogg Advanced Ammonia Process (KAAP) [2]. The Ru-based catalysts permit milder operating conditions compared with the magnetite-based systems, such as low synthesis pressure (70 -105 bars compared with 150 - 300 bars) and lower synthesis temperatures, while maintaining higher conversion than a conventional system [3]. [Pg.317]

Since theoretical calculation of effectiveness is uncertain and is moreover sensitive to operating conditions, for industrially important cases it is determined by such reaction tests. Common types of curve fits may be used. For ammonia synthesis catalyst, for instance, an equation is provided by Dyson Simon (IEC Fundam 7 605, 1968) in terms of temperature and... [Pg.736]

The most important uses of synthesis gas are the manufacture of ammonia (NH3) via the Haber process. A mixture of nitrogen and hydrogen are passed over an iron catalyst (with aluminum oxide present as a "promoter"). The operating conditions are extreme—800°F and 4000 psi,... [Pg.176]

Table 6-5 shows the conditions for which NH3 production is possible. Both low temperatures or very high pressures achieve favorable equilibrium. At 25°C, the equilibrium constant is very high, while at higher temperatures, both Keq and PNH3 decrease rapidly. Generally, ammonia synthesis reactors operate at about 350°C and 200 atm with an equilibrium conversion of about 70% in each pass. The NH3 is separated from unreacted H2 and N2, which are recycled back to the reactor. For the overall process involving the tubular reactor, separation and recycle produce about 100% ammonia conversion. [Pg.482]

In most processes the reaction takes place on an iron catalyst. The reaction pressure is normally in the range of 150 to 250 bar, and temperatures are in the range of 350°C to 550°C. At the usual commercial converter operating conditions, the conversion achieved per pass is only 20% to 30%53. In most commercial ammonia plants, the Haber recycle loop process is still used to give substantially complete conversion of the synthesis gas. In the Haber process the ammonia is separated from the recycle gas by cooling and condensation. Next the unconverted synthesis gas is supplemented with fresh makeup gas, and returned as feed to the ammonia synthesis converter74. [Pg.163]

Knowledge of the macrokinetics is important for solving the industrial problem of designing ammonia synthesis reactors, for determining the optimal operating conditions and for computer control of ammonia plants. Some of the considerations are ... [Pg.165]

Many ammonia synthesis converters operate at 150 to 200 bar and around 515°C. Under these conditions, nitriding and hydrogen embrittlement can occur. The pressure shell is a multi-layer or multi-wall carbon steel vessel. The internal catalyst baskets, contained in the shell, are made of SS 321 material88. [Pg.197]

Description Ammonia and carbon dioxide react at 155 bar to synthesize urea and carbamate. The reactor conversion rate is very high under the N/C ratio of 3.7 with a temperature of 182-185°C. Unconverted materials in synthesis solution are efficiently separated by C02 stripping. The milder operating condition and using two-phase stainless steel prevent corrosion problems. Gas from the stripper is condensed in vertical submerged carbamate condenser. Using an HP Ejector for internal synthesis recycle, major synthesis equipment is located on the ground level. [Pg.200]

Thus, in ammonia synthesis, mixed oxide base catalysts allowed new progress towards operating conditions (lower pressure) approaching optimal thermodynamic conditions. Catalytic systems of the same type, with high weight productivity, achieved a decrease of up to 35 per cent in the size of the reactor for the synthesis of acrylonitrile by ammoxidation. Also worth mentioning is the vast development enjoyed as catalysis by artificial zeolites (molecular sieves). Their use as a precious metal support, or as a substitute for conventional silico-aluminaies. led to catalytic systems with much higher activity and selectivity in aromatic hydrocarbon conversion processes (xylene isomerization, toluene dismutation), in benzene alkylation, and even in the oxychlorination of ethane to vinyl chloride. [Pg.414]

Equations for describing ammonia synthesis under industrial operating conditions must represent the influence of the temperature, the pressure, the gas composition, and the equilibrium composition. Moreover, they must also take into consideration the dependence of the ammonia formation rate on the concentration of catalyst poisons and the influence of mass-transfer resistances, which are significant in industrial ammonia synthesis. [Pg.29]

This section describes in detail three topics in heterogeneous catalysis to which DFT calculations have recently been applied with great effect, the prediction of CO oxidation rates over RuO2(110), the prediction of ammonia synthesis rates by supported nanoparticles of Ru, and the DFT-based design of new selective catalysts for ethylene epoxidation. All three examples involve the careful application of DFT calculations and other appropriate theoretical methods to make quantitative predictions about the performance of heterogeneous catalysts under realistic operating conditions. [Pg.111]

Figure 14 shows maximum sulfur contents for the equilibrium mentioned above at different temperatures of operation. Point 1 corresponds to experiences of the Coal Research Institute in Miilheim, point 2 presents conditions of a technical scale operation for production of synthesis gas for ammonia synthesis. The points 3-8 are literature values for similar processes (99). [Pg.327]

All catalysts, operated either in laboratory or conmiercially, are deactivated during their use. Deactivation is very important in commercial operation because it influences the choice of the operational conditions and fixes the cycle length between regenerations and the total life of the catalyst. Some catalysts remain active for a decade (catalysts for oxidation of SO2 and for ammonia synthesis) whereas others must be regenerated after a few minutes of operation (catalysts for fluidized bed hydrocarbon cracking). [Pg.65]


See other pages where Ammonia synthesis operating conditions is mentioned: [Pg.38]    [Pg.76]    [Pg.525]    [Pg.173]    [Pg.366]    [Pg.181]    [Pg.116]    [Pg.83]    [Pg.429]    [Pg.315]    [Pg.148]    [Pg.148]    [Pg.179]    [Pg.2]    [Pg.28]    [Pg.284]    [Pg.1024]    [Pg.71]    [Pg.210]    [Pg.221]    [Pg.246]    [Pg.257]    [Pg.315]    [Pg.626]    [Pg.120]    [Pg.3213]    [Pg.536]    [Pg.34]    [Pg.313]    [Pg.289]    [Pg.637]    [Pg.793]    [Pg.71]   
See also in sourсe #XX -- [ Pg.52 ]




SEARCH



Ammonia Conditioning

Ammonia synthesis

Ammonia synthesis loop operating conditions

Operant conditioning

Operating conditions

Operating conditions, ammonia

Operational condition

© 2024 chempedia.info