Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ammonia Conjugate acid

It works the same way for bases. Every base has a conjugate acid. The ammonium in the above equation, for example, is ammonias conjugate acid. The ammonium ion has an extra proton that it can donate, making it an acid. [Pg.24]

The formation of the above anions ("enolate type) depend on equilibria between the carbon compounds, the base, and the solvent. To ensure a substantial concentration of the anionic synthons in solution the pA" of both the conjugated acid of the base and of the solvent must be higher than the pAT -value of the carbon compound. Alkali hydroxides in water (p/T, 16), alkoxides in the corresponding alcohols (pAT, 20), sodium amide in liquid ammonia (pATj 35), dimsyl sodium in dimethyl sulfoxide (pAT, = 35), sodium hydride, lithium amides, or lithium alkyls in ether or hydrocarbon solvents (pAT, > 40) are common combinations used in synthesis. Sometimes the bases (e.g. methoxides, amides, lithium alkyls) react as nucleophiles, in other words they do not abstract a proton, but their anion undergoes addition and substitution reactions with the carbon compound. If such is the case, sterically hindered bases are employed. A few examples are given below (H.O. House, 1972 I. Kuwajima, 1976). [Pg.10]

The stronger base is derived from the weaker conjugate acid Therefore add a proton to ammonia to give its conjugate acid (ammonium ion) and a proton to pyridine to give its conjugate acid (pyridimum ion) then look up the values for each... [Pg.38]

When an acid and a base react, the products are a new acid and base. For example, the acetate ion, C1T3COO-, in reaction 6.7 is a base that reacts with the acidic ammonium ion, N1T45", to produce acetic acid and ammonia. We call the acetate ion the conjugate base of acetic acid, and the ammonium ion is the conjugate acid of ammonia. [Pg.140]

Problem 2.11 Nitric acid (HN03) reacts with ammonia (NH3) to yield ammonium nitrate. Write the reaction, and identify the acid, the base, the conjugate acid product, and the conjugate base product. [Pg.50]

To express the relative strengths of an acid and its conjugate base (a conjugate acid-base pair ), we consider the special case of the ammonia proton transfer equilibrium, reaction C, for which the basicity constant was given earlier (Kb = [NH4+l[OH ]/ NH3]). Now let s consider the proton transfer equilibrium of ammonia s conjugate acid, NH4+, in water ... [Pg.529]

The most important type of mixed solution is a buffer, a solution in which the pH resists change when small amounts of strong acids or bases are added. Buffers are used to calibrate pH meters, to culture bacteria, and to control the pH of solutions in which chemical reactions are taking place. They are also administered intravenously to hospital patients. Human blood plasma is buffered to pH = 7.4 the ocean is buffered to about pH = 8.4 by a complex buffering process that depends on the presence of hydrogen carbonates and silicates. A buffer consists of an aqueous solution of a weak acid and its conjugate base supplied as a salt, or a weak base and its conjugate acid supplied as a salt. Examples are a solution of acetic acid and sodium acetate and a solution of ammonia and ammonium chloride. [Pg.566]

The same expression can be used for a basic buffer, with pKa that of the conjugate acid of the base (for example, in the case of an ammonia buffer, we would use the pKa of NH4+). If only pKb is available, calculate pKa by using Eq. 1 lb of Chapter 10 (pKa + pKb = pfCw). For example, for an ammonia/ammonium buffer we would write... [Pg.570]

The introduction of conjugate acid-base pairs completes our inventory of acids and bases, hi addition to strong bases, ammonia, and amines, the anions of weak acids act as bases. [Pg.1239]

Salts that contain cations of weak bases are acidic. For example, the ammonium cation Is the conjugate acid of ammonia. When ammonium salts dissolve in water, NH4 ions transfer protons to H2 O molecules, generating H3 O and making the solution slightly acidic NH4" ((2 q) + H2 0(/) NH3(c2 q) + H3 O (a q) The equilibrium constant for this reaction can be calculated from Equation and for ammonia (Example ) ... [Pg.1243]

Apparently, no bottles of aqueous ammonia are present in the laboratory, so the components of the buffer solution must come from the salts. The technician needs an ammonium salt with a counter anion that has no acid-base properties. Ammonium chloride (NH4 Cl) would be an appropriate choice. This salt contains the conjugate acid, NH4, and the technician can generate NH3 by adding strong base to the ammonium chloride solution NH4 ((2 q) + OH ((2 q) NH3((3 q) + H2 0(/)... [Pg.1288]

Fig. 4.1. Potential ranges of solvents, (a) h.n.p.s of acids. I, Acetic acid II, benzoic acid III, formic acid IV, salicylic acid V, sulphuric acid VI, p-toluenesulphonic acid, (b) h.n.p.s of conjugate acids of I, n-butylamine II, piperidine III, ethylenediamine (1) IV, ammonia V, ethylenediamine (2) VI, pyridine. Fig. 4.1. Potential ranges of solvents, (a) h.n.p.s of acids. I, Acetic acid II, benzoic acid III, formic acid IV, salicylic acid V, sulphuric acid VI, p-toluenesulphonic acid, (b) h.n.p.s of conjugate acids of I, n-butylamine II, piperidine III, ethylenediamine (1) IV, ammonia V, ethylenediamine (2) VI, pyridine.
The conjugate acids of ammonia and methylamine are the ammonium ion, NH44" (pKa = 9.2) and the methylammonium ion, CH3NH3+ (pKa = 10.6) respectively. Since methylammonium ion is a weaker acid than ammonium ion, methylamine is a stronger base than ammonia. [Pg.100]

In this reaction, acetic acid donates a proton to produce its conjugate, the acetate ion, which is able to function as a proton acceptor. Ammonia accepts a proton to produce its conjugate, the ammonium ion, which can function as a proton donor. Two species that differ by the transfer of a proton are known as a conjugate pair. The conjugate acid of H20 is H30+, and the conjugate base of H20 is OH-. [Pg.293]

Alternatively, the translational energy threshold for endothermic proton transfer from MH+ to R can be measured using a flowing afterglow triple quadrupole instrument.127 These data define the proton affinity of M, relative to that of R. Thus, the PA of cyclopropenylidene was found to exceed that of ammonia by 23.3 1.8 kcal/mol (Table 6).128 In order to obtain absolute proton affinities, the enthalpies of formation of both the base and the conjugate acid must be known from other measurements (Eq. 9). Numerous reference compounds with known absolute PA are available.124... [Pg.36]

The conjugate acid of a base is formed when the base acquires a proton from the acid. In this reaction, water acts as an acid because it donates a proton to the ammonia molecule. The ammonium ion (NH4+) is the conjugate acid of ammonia (NH3), a base, which receives a proton from water. The hydroxide ion (OH ) is the conjugate base. [Pg.177]

An important example of a conjugate acid is the ammonium ion formed by the neutralization of ammonia with an acid ... [Pg.113]

The ammonium ion is a conjugate acid because it can lose a hydrogen and become ammonia again (the reverse of Equation (5.21)), and thus ammonia (or ammonium hydroxide) and ammonium ion (such as from ammonium chloride) together constitute another conjugate acid-base pair. [Pg.113]

Interpreting this equation from right to left, the ammonium ion, (which is the conjugate acid of aqueous ammonia) is a relatively strong acid, compared to water. In solution, ammonium ions react with water, resulting in an acidic solution ... [Pg.421]

A basic buffer consists of a solution of a weak base and one of its salts, such as a solution of ammonia and ammonium chloride. The weak base, ammonia, removes any added hydrogen ions. The conjugate acid, the ammonium ions from the ammonium chloride salt, replaces any hydrogen ions removed when the alkali was added. [Pg.37]

Ammonia acts as a base by stripping a proton from a water molecule, leaving an increased OH concentration. Notice in the equilibrium reaction that NH4 and NH3 are a conjugate acid-base pair, related by transferring a single proton. [Pg.107]

Different synthetic routes have been used to prepare these carbenes (Scheme 8.6). The most common procedure is the deprotonation of the conjugate acid. In early experiments, sodium or potassium hydride, in the presence of catalytic amounts of either f-BuOK or the DMSO anion were used. ° Then, Herrmann et al. showed that the deprotonation occurs much more quickly in liquid ammonia as solvent (homogeneous phase), and many carbenes of type IV have been prepared following this procedure. In 1993, Kuhn and Kratz" developed a new and versatile approach to the alkyl-substituted N-heterocyclic carbenes IV. This original synthetic strategy relied on the reduction of imidazol-2(3//)-thiones with potassium in boiling tetrahydrofuran (THF). Lastly, Enders et al." reported in 1995 that the 1,2,4-triazol-5-ylidene (Vila) could be obtained in quantitative yield from the corresponding 5-methoxy-l,3,4-triphenyl-4,5-dihydro-l//-l,2,4-triazole by thermal elimination (80 °C) of methanol in vacuo (0.1 mbar). [Pg.338]


See other pages where Ammonia Conjugate acid is mentioned: [Pg.35]    [Pg.35]    [Pg.148]    [Pg.77]    [Pg.77]    [Pg.35]    [Pg.35]    [Pg.148]    [Pg.77]    [Pg.77]    [Pg.44]    [Pg.44]    [Pg.303]    [Pg.277]    [Pg.529]    [Pg.529]    [Pg.559]    [Pg.1003]    [Pg.349]    [Pg.313]    [Pg.148]    [Pg.184]    [Pg.242]    [Pg.220]    [Pg.511]    [Pg.216]    [Pg.234]    [Pg.236]    [Pg.415]    [Pg.440]    [Pg.16]    [Pg.158]    [Pg.160]    [Pg.226]   
See also in sourсe #XX -- [ Pg.46 ]




SEARCH



Acid ammonia

Ammonia acidity

© 2024 chempedia.info