Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ammonia anode contamination

Gasifiers typically produce contaminants that need to be removed before entering the fuel cell anode. These contaminants include H2S, COS, NH3, HCN, particulate, and tars, oils, and phenols. The contaminant levels are dependent upon both the fuel composition and the gasifier employed. There are two families of cleanup that can be utilized to remove the sulfur impurities hot and cold gas cleanup systems. The cold gas cleanup technology is commercial, has been proven over many years, and provides the system designer with several choices. The hot gas cleanup technology is still developmental and would likely need to be joined with low-temperature cleanup systems to remove the non-sulfur impurities in a fuel cell system. For example, tars, oils, phenols, and ammonia could all be removed in a low-temperature water quench followed by gas reheat. [Pg.314]

With TAA salts of small alkyl groups (e.g., ethyl, methyl), cation reduction is usually the limiting cathodic reaction. The anodic limiting reaction for ammonium ions is their oxidation to nitrogen and protons. It should be emphasized that atmospheric contaminants are supposed to influence the above cathodic and anodic limits of liquid ammonia, as they do for the other nonaqueous systems discussed in the previous sections. [Pg.185]

Ammonia, produced due to the coexistence of H2 and N2 at high temperatures in the presence of catalyst, was estimated to be in the concentration range of 30 to 90 ppm [37, 38], Uribe et al. [39] examined the effects of ammonia trace on PEM fuel cell anode performance and reported that a trace in the order of tens of parts per million could lead to considerable performance loss. They also used EIS in their work. By measuring the high-frequency resistance (HFR, mainly contributed by membrane resistance) with an operation mode of H2 + NH3/air (feeding the anode with hydrogen and ammonia), they obtained some information related to membrane conductivity, and found that conductivity reduction due to ammonia contamination is the major cause of fuel cell degradation. [Pg.234]

The vulnerability of Pt and Pt alloy catalysts to poisoning by trace contaminants at operation temperatures typical for a PEFC is well documented and is of clear concern in the design of a power system based on a PEFC stack. Sources of contaminants include both fuel and air feed streams as well as processes derived from chemical instability of cell component(s). As to the feed streams, polishing of anode feed streams generated by fuel processing upstream the cell should leave very low levels of CO to be dealt with effectively within the cell (see Sect. 8.3.7.1), whereas any traces of sulfur or ammonia have to be perfectly eliminated upstream the anode... [Pg.598]

Other contaminants of concern include ammonia (membrane deterioration), alkali metals (catalyst poisoning, membrane degradation), particles, and heavy hydrocarbons (catalyst poisoning and plugging). Both the anode and cathode flows must be carefully filtered for these contaminants, as even ppb-level concentration can lead to premature cell and stack failure. [Pg.98]

Ammonia in the hydrogen fuel originates from the hydrogen production process. The impact on fuel cell performance is as described for the cathode contamination, and is similar whether it is introduced in the cathode or anode. [Pg.42]

The last section of the chapter deals with understanding the poisoning of the anode by other contaminants, such as ammonia and mixtures of contamination. A comprehensive literature review of the contamination of the anode of PEM fuel cells revealed that numerical models that consider other contaminants are nonexistent in literature. Therefore, much work is needed in understanding these types of contaminations numerically. [Pg.281]

Ammonia (NH3) or ammonium (NH4+) can exist in both the fuel and air streams. The diffusion of ammonium is fast, therefore, the ammonium entering the fuel cell from either side can quickly diffuse to the other side causing the contamination effect on both sides. For instance, for a typical membrane with a thickness of 10 to 100 jim, the estimated characteristic time constant for diffusion is 1 to 100 sec [149]. Ammonia may affect the PEMFC performance in different ways (1) by the reduction of the ionic conductivity of the membrane, which in its ammonium form is a factor of 4 lower than in the protonated form [149-151] (2) by poisoning the cathode catalyst [151] and (3) by poisoning the anode catalyst [149]. Recently, fuel cell tests have shown that the reduced membrane conductivity is not the major reason for performance losses induced by ammonia [149,150]. The effect of ammonia on the HOR was found to be minor at current densities below 0.5 A cm", but would increase with increasing current densities. The current density did not exceed 1 A cm in the presence of ammonia [149]. [Pg.390]


See other pages where Ammonia anode contamination is mentioned: [Pg.176]    [Pg.365]    [Pg.614]    [Pg.342]    [Pg.399]    [Pg.205]    [Pg.3086]    [Pg.640]    [Pg.41]    [Pg.167]    [Pg.169]    [Pg.276]    [Pg.376]    [Pg.178]    [Pg.45]    [Pg.592]    [Pg.152]   
See also in sourсe #XX -- [ Pg.64 , Pg.65 , Pg.275 ]




SEARCH



Ammonia contamination

Anode contaminants

Anode contamination

© 2024 chempedia.info