Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

2-Amino-3-carboxymuconic semialdehyde

Scheme 12.105. A path from tryptophan (Trp, W) to 2-amino-3-carboxymuconate semialdehyde, which spontaneously cyclizes to quinolinic acid (Begley,T. P. Nat. Prod. Rep., 2006,23,... Scheme 12.105. A path from tryptophan (Trp, W) to 2-amino-3-carboxymuconate semialdehyde, which spontaneously cyclizes to quinolinic acid (Begley,T. P. Nat. Prod. Rep., 2006,23,...
Figure 2 NAD biosynthesis subsystem diagram. Major functional roles are shown by 4-6 letter abbreviations (explained in Table 1) over the colored background reflecting the key aspects or modules (pathways) that comprise NAD biosynthesis in various species. Catalyzed reactions are shown by solid straight arrows, and corresponding intermediate metabolites are shown as abbreviations within ovals Asp, L-aspartate lA, Iminoaspartate Qa, quinolinic acid Nm, nicotinamide Na, nicotinic acid NaMN, nicotinic acid mononucleotide NMN, nicotinamide mononucleotide RNm, N-ribosyInicotinamide NaAD, nicotinate adenine dinucleotide NAD, nicotinamide adenine dinucleotide NADP, NAD-phosphate Trp, tryptophan FKyn, N-formylkynurenine Kyn, kynurenine HKyn, 3-hydroxykynurenine HAnt, 3-hydroxyanthranilate and ACMS, a-amino-/3-carboxymuconic semialdehyde. Unspecified reactions (including spontaneous transformation and transport) are shown by dashed arrows. Figure 2 NAD biosynthesis subsystem diagram. Major functional roles are shown by 4-6 letter abbreviations (explained in Table 1) over the colored background reflecting the key aspects or modules (pathways) that comprise NAD biosynthesis in various species. Catalyzed reactions are shown by solid straight arrows, and corresponding intermediate metabolites are shown as abbreviations within ovals Asp, L-aspartate lA, Iminoaspartate Qa, quinolinic acid Nm, nicotinamide Na, nicotinic acid NaMN, nicotinic acid mononucleotide NMN, nicotinamide mononucleotide RNm, N-ribosyInicotinamide NaAD, nicotinate adenine dinucleotide NAD, nicotinamide adenine dinucleotide NADP, NAD-phosphate Trp, tryptophan FKyn, N-formylkynurenine Kyn, kynurenine HKyn, 3-hydroxykynurenine HAnt, 3-hydroxyanthranilate and ACMS, a-amino-/3-carboxymuconic semialdehyde. Unspecified reactions (including spontaneous transformation and transport) are shown by dashed arrows.
Formation of Qa via aerobic degradation ofTrp (Kyn pathway) includes five enzymatic steps (1) oxidation of Trp to N-formyl kynurenine (FKyn) by Trp 2,3-dioxygenase (TRDOX), (2) deformylation of FKyn by kynurenine formamidase (KYNFA), (3) oxidation of Kyn to 3-hydroxykynurenine (HKyn) by kynurenine 3-monooxygenase (KYNOX), (4) conversion of HKyn into 3-hydroxyanthranilate (HAnt) by kynureninase (KYNSE), and (5) oxidation of HAnt by 3-hydroxyanthranilate 3,4-dioxygenase (HADOX) to a-amino-/3-carboxymuconic semialdehyde (ACMS) followed by its spontaneous cyclization to Qa (Scheme 2). This pathway and all respective... [Pg.221]

Figure 2 NAD metabolism. Tip = tryptophan, 3-HK = 3-hydroxykynurenine, 3-HA = 3-hydroxyanthranilic acid, ACMS = a-amino-P-carboxymuconate- -semialdehyde, AMS = a-aminomuconate- -semialdehyde, NaMN = nicotinic acid mononucleotide, NMN = nicotinamide mononucleotide, NaAD = nicotinic acid adenine dinucleotide. For other abbreviations, see Figure 1. (1) tryptophan oxygenase [EC 1.13.11.11], (2) formy-dase [EC 3.5.1.9], (3) kynurenine 3-hydroxylase [EC 1.14.13.9], (4) kynureninase [EC 3.7.1.3], (5) 3-hydroxyanthranilic acid oxygenase [EC 1.13.11.6], (6) nonenzymatic, (7) aminocarboxymuconate-semialdehyde decarboxylase [EC 4.1.1.45], (8) quinolinate phos-phoribosyltransferase [EC 2.4.2.19], (9) NaMN adenylyltransferase [EC 2.7.2.18], (10) NAD synthetase [EC 6.3.5.1], (11) NAD kinase [EC 2.7.1.23], (12) NAD" glycohydro-lase [EC 3.2.2.5], (13) nicotinamide methyltransferase [EC 2.2.1.1], (14) 2-Py-forming MNA oxidase [EC 1.2.3.1], (15) 4-Py-forming MNA oxidase [EC number not given], (16) nicotinamide phosphoribosyltransferase [EC 2.4.2.12], (17) NMN adenylytransferase [EC 2.7.71], (18) nicotinate phosphoribosyltransferase [EC 2.4.2.11], (19) nicotinate methyltransferase [EC 2.7.1.7], and nicotinamidase [EC 3.5.1.19]. Solid line, biosynthesis dotted line, catabolism. Figure 2 NAD metabolism. Tip = tryptophan, 3-HK = 3-hydroxykynurenine, 3-HA = 3-hydroxyanthranilic acid, ACMS = a-amino-P-carboxymuconate- -semialdehyde, AMS = a-aminomuconate- -semialdehyde, NaMN = nicotinic acid mononucleotide, NMN = nicotinamide mononucleotide, NaAD = nicotinic acid adenine dinucleotide. For other abbreviations, see Figure 1. (1) tryptophan oxygenase [EC 1.13.11.11], (2) formy-dase [EC 3.5.1.9], (3) kynurenine 3-hydroxylase [EC 1.14.13.9], (4) kynureninase [EC 3.7.1.3], (5) 3-hydroxyanthranilic acid oxygenase [EC 1.13.11.6], (6) nonenzymatic, (7) aminocarboxymuconate-semialdehyde decarboxylase [EC 4.1.1.45], (8) quinolinate phos-phoribosyltransferase [EC 2.4.2.19], (9) NaMN adenylyltransferase [EC 2.7.2.18], (10) NAD synthetase [EC 6.3.5.1], (11) NAD kinase [EC 2.7.1.23], (12) NAD" glycohydro-lase [EC 3.2.2.5], (13) nicotinamide methyltransferase [EC 2.2.1.1], (14) 2-Py-forming MNA oxidase [EC 1.2.3.1], (15) 4-Py-forming MNA oxidase [EC number not given], (16) nicotinamide phosphoribosyltransferase [EC 2.4.2.12], (17) NMN adenylytransferase [EC 2.7.71], (18) nicotinate phosphoribosyltransferase [EC 2.4.2.11], (19) nicotinate methyltransferase [EC 2.7.1.7], and nicotinamidase [EC 3.5.1.19]. Solid line, biosynthesis dotted line, catabolism.
Muraki T, M Taki, Y Hasegawa, H Iwaki, PCK Lau (2003) Prokaryotic homologues of the eukaryotic 3-hydroxyanthranilate 3,4-dioxygenase and 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase in the 2-nitrobenzoate degradation pathway of Pseudomonas fluorescens strain KU-7. Appl Environ Microbiol 69 1564-1572. [Pg.519]

Catabolism of tyrosine and tryptophan begins with oxygen-requiring steps. The tyrosine catabolic pathway, shown at the end of this chapter, results in the formation of fumaric acid and acetoacetic acid. Tryptophan catabolism commences with the reaction catalyzed by tryptophan-2,3-dioxygenase. This enzyme catalyzes conversion of the amino acid to N-formyl-kynurenine. The enzyme requires iron and copper and thus is a metalloenzyme. The final products of the pathway are acetoacetyl-CoA, acetyl-CoA, formic acid, four molecules of carbon dioxide, and two ammonium ions. One of the intermediates of tryptophan catabolism, a-amino-P-carboxymuconic-8-semialdehyde, can be diverted from complete oxidation, and used for the synthesis of NAD (see Niacin in Chapter 9). [Pg.428]

Degradation of L-tryptophan in most organisms proceeds via L-kynurenine, 3-hydroxy-L-kynurenine, 3-hydroxyanthranilic acid and quinolinic acid to acetyl Co A and CO2 (Fig. 244). Anthranilic acid formed as an intermediate may be recycled to L-tryptophan (see above). The ring of 3-hydroxyanthranilic acid is cleaved by a dioxygenase (C 2.5). The x-amino-/3-carboxymuconic acid-e-semialdehyde formed either undergoes a cis trans isomerization of the Zl -double bond and cyclization to quinolinic acid, a compound synthesized in microorganisms and plants from aspartic acid and D-glyceraldehyde-3-phosphate (D 16.2). On the other hand o -amino-/3-carboxymuconic acid-e-aldehyde may be de-carboxylated and is then the immediate precursor of NH3, acetic acid and COg. [Pg.387]

C. a-Amino-)8-carboxymuconic-6-semialdehyde Quinolinic acid (Bokman and... [Pg.7]

Keys, L. D., and G. A. Hamilton. 1987. The mechanism for the conversion of a-amino-P-carboxymucon-ate-8-semialdehyde to quinolinate, an apparent nonenzymic step in the biosynthesis of the nicotinamide coenzymes from tryptophan. J. Am. Chem. Soc. 109 2156-2163. [Pg.18]


See other pages where 2-Amino-3-carboxymuconic semialdehyde is mentioned: [Pg.353]    [Pg.1234]    [Pg.353]    [Pg.250]    [Pg.1234]    [Pg.103]    [Pg.1294]    [Pg.1294]    [Pg.970]    [Pg.695]   


SEARCH



3-carboxymuconate

Amino semialdehyde

Semialdehydes

© 2024 chempedia.info