Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amino acids formation constants

Remes et al. (1976) also investigated the kinetics of the N-azo coupling of nine a-amino acids. They are aware of earlier investigations in which the major products were pentaz-1,4-dienes, but they claim that under their reaction conditions (pH 8.00-10.25, thirty-fold excess of amino acid) only the triazenes are formed. The rates were found to be first-order with respect to diazonium ion which is consistent with their conclusion however, in the opinion of the present author the results suggest a significant (say, 10%) contribution of pentazdiene formation to the total rate process. No significant correlation was found between the rate constants and the acidity constants of the nine amino acids. [Pg.392]

In aqueous solutions at pH 7, there is little evidence of complex formation between [MesSnflV)] and Gly. Potentiometric determination of the formation constants for L-Cys, DL-Ala, and L-His with the same cation indicates that L-Cys binds more strongly than other two amino acids (pKi ca. 10,6, or 5, respectively). Equilibrium and spectroscopic studies on L-Cys and its derivatives (S-methyl-cystein (S-Me-Cys), N-Ac-Cys) and the [Et2Sn(IV)] system showed that these ligands coordinate the metal ion via carboxylic O and the thiolic 5 donor atoms in acidic media. In the case of S-Me-Cys, the formation of a protonated complex MLH was also detected, due to the stabilizing effect of additional thioether coordination. ... [Pg.365]

More recently Hand et al. (ref. 9) have studied the decomposition reaction of N-chloro-a-amino acid anions in neutral aqueous solution, where the main reaction products are carbon dioxide, chloride ion and imines (which hydrolyze rapidly to amine and carbonyl products). They found that the reaction rate constant of decarboxylation was independent of pH, so they ruled out a proton assisted decarboxylation mechanism, and the one proposed consists of a concerted decarboxylation. For N-bromoamino acids decomposition in the pH interval 9-11 a similar concerted mechanism was proposed by Antelo et al. (ref. 10), where the formation of a nitrenium ion (ref. 11) can be ruled out because it is not consistent with the experimental results. Antelo et al. have also established that when the decomposition reaction takes place at pH < 9, the disproportionation reaction of the N-Br-amino acid becomes important, and the decomposition goes through the N,N-dibromoamino acid. This reaction is also important for N-chloroamino compounds but at more acidic pH values, because the disproportionation reaction... [Pg.227]

Figure 5.19 Formation of amino acids on ice surfaces irradiated in the laboratory (Nature Nature 416, 403-406 (28 March 2002) doi 10.1038/416403a-permission granted). Data were obtained from analysis of the room temperature residue of photoprocessed interstellar medium ice analogue taken after 6 M HCl hydrolysis and derivatization (ECEE derivatives, Varian-Chrompack Chirasil-L-Val capillary column 12 m x 0.25 mm inner diameter, layer thickness 0.12 pirn splitless injection, 1.5 ml min-1 constant flow of He carrier gas oven temperature programmed for 3 min at 70°C, 5°C min-1, and 17.5 min at 180°C detection of total ion current with GC-MSD system Agilent 6890/5973). The inset shows the determination of alanine enantiomers in the above sample (Chirasil-L-Val 25 m, single ion monitoring for Ala-ECEE base peak at 116 a.m.u.). DAP, diaminopentanoic acid DAH, diaminohexanoic acid a.m.u., atomic mass units. Figure 5.19 Formation of amino acids on ice surfaces irradiated in the laboratory (Nature Nature 416, 403-406 (28 March 2002) doi 10.1038/416403a-permission granted). Data were obtained from analysis of the room temperature residue of photoprocessed interstellar medium ice analogue taken after 6 M HCl hydrolysis and derivatization (ECEE derivatives, Varian-Chrompack Chirasil-L-Val capillary column 12 m x 0.25 mm inner diameter, layer thickness 0.12 pirn splitless injection, 1.5 ml min-1 constant flow of He carrier gas oven temperature programmed for 3 min at 70°C, 5°C min-1, and 17.5 min at 180°C detection of total ion current with GC-MSD system Agilent 6890/5973). The inset shows the determination of alanine enantiomers in the above sample (Chirasil-L-Val 25 m, single ion monitoring for Ala-ECEE base peak at 116 a.m.u.). DAP, diaminopentanoic acid DAH, diaminohexanoic acid a.m.u., atomic mass units.
Figure 7.4 Basic structure of an IgG molecule. Two heavy chains (440 residues) and two light chains (214 residues) are joined by disulphide bonds and each shows a relatively constant amino acid sequence in one section (C-terminal end) and a variable sequence section (N-terminal end). The variable regions of both heavy and light chains are involved in the formation of the antigen-binding site. Figure 7.4 Basic structure of an IgG molecule. Two heavy chains (440 residues) and two light chains (214 residues) are joined by disulphide bonds and each shows a relatively constant amino acid sequence in one section (C-terminal end) and a variable sequence section (N-terminal end). The variable regions of both heavy and light chains are involved in the formation of the antigen-binding site.
Once activated, MV-CCP reacts with 1 equiv of H2O2 in a bimolecu-lar reaction, presumably to form compound 0. In YCCP and HRP this species is referred to as compound ES or compound I, respectively, and contains oxyferryl heme and either a porphyrin n -cation radical (HRP) or an amino acid radical (YCCP). However, the presence of an extra reducing equivalent on the second heme in CCP suggests that such an oxidizing radical species close to the active site heme will be very shortlived and readily form compound I (Fig. 10), which is formally Fe(HI) Fe(IV)=0. The bimolecular rate constant for compound I formation is reported to be very close to the diffusion limit (84). [Pg.199]

Insulin Lispro was the first recombinant fast-acting insulin analogue to gain marketing approval (Table 8.3). It displays an amino acid sequence identical to native human insulin, with one alteration — an inversion of the natural proline lysine sequence found at positions 28 and 29 of the insulin jS-chain. This simple alteration significantly decreased the propensity of individual insulin molecules to self-associate when stored at therapeutic dose concentrations. The dimerization constant for Insulin Lispro is 300 times lower than that exhibited by unmodified human insulin. Structurally, this appears to occur as the change in sequence disrupts the formation of inter-chain hydrophobic interactions critical to self-association. [Pg.319]

Initiation (Figs. 29-10 and 29-11), elongation (Fig. 29-12), and termination are three distinct steps in the synthesis of a protein. A variety of specialized proteins are required for each stage of synthesis. Their sequential interaction with ribosomes can be viewed as a means of ensuring an orderly sequence of steps in the synthesis cycle. The rate of protein formation will depend upon the concentrations of amino acids, tRNAs, protein factors, numbers of ribosomes, and kinetic constants. The formation of specific proteins can also be inhibited by translational repressors, proteins that compete with ribosomes for binding to target mRNAs.287... [Pg.1698]


See other pages where Amino acids formation constants is mentioned: [Pg.210]    [Pg.95]    [Pg.535]    [Pg.808]    [Pg.76]    [Pg.149]    [Pg.216]    [Pg.365]    [Pg.15]    [Pg.399]    [Pg.403]    [Pg.108]    [Pg.113]    [Pg.457]    [Pg.302]    [Pg.112]    [Pg.153]    [Pg.82]    [Pg.53]    [Pg.829]    [Pg.1073]    [Pg.219]    [Pg.305]    [Pg.119]    [Pg.56]    [Pg.344]    [Pg.156]    [Pg.788]    [Pg.366]    [Pg.323]    [Pg.26]    [Pg.54]    [Pg.449]    [Pg.118]    [Pg.286]    [Pg.124]    [Pg.69]    [Pg.16]    [Pg.938]    [Pg.391]    [Pg.204]   
See also in sourсe #XX -- [ Pg.2 , Pg.742 ]




SEARCH



Amino acids Formation

Amino formation

Formation constant

© 2024 chempedia.info