Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amino-acids corrected

In general, the NMR spectra of random-coil polypeptides are easily predictable using chemical shifts of individual carbon resonances in amino acids, corrected for incorporation into amino acids. The presence of steric strain in peptides has been detected in the chemical shifts of cyclic synthetic peptides (Deslauriers et al, 1976a). [Pg.288]

A potentially general method of identifying a probe is, first, to purify a protein of interest by chromatography (qv) or electrophoresis. Then a partial amino acid sequence of the protein is deterrnined chemically (see Amino acids). The amino acid sequence is used to predict likely short DNA sequences which direct the synthesis of the protein sequence. Because the genetic code uses redundant codons to direct the synthesis of some amino acids, the predicted probe is unlikely to be unique. The least redundant sequence of 25—30 nucleotides is synthesized chemically as a mixture. The mixed probe is used to screen the Hbrary and the identified clones further screened, either with another probe reverse-translated from the known amino acid sequence or by directly sequencing the clones. Whereas not all recombinant clones encode the protein of interest, reiterative screening allows identification of the correct DNA recombinant. [Pg.231]

The main role of the human thyroid gland is production of thyroid hormones (iodinated amino acids), essential for adequate growth, development, and energy metaboHsm (1 6). Thyroid underfunction is an occurrence that can be treated successfully with thyroid preparations. In addition, the thyroid secretes calcitonin (also known as thyrocalcitonin), a polypeptide that lowers excessively high calcium blood levels. Thyroid hyperfunction, another important clinical entity, can be corrected by treatment with a variety of substances known as antithyroid dmgs. [Pg.46]

There is some confusion in using Bayes rule on what are sometimes called explanatory variables. As an example, we can try to use Bayesian statistics to derive the probabilities of each secondary structure type for each amino acid type, that is p( x r), where J. is a, P, or Y (for coil) secondary strucmres and r is one of the 20 amino acids. It is tempting to writep( x r) = p(r x)p( x)lp(r) using Bayes rule. This expression is, of course, correct and can be used on PDB data to relate these probabilities. But this is not Bayesian statistics, which relate parameters that represent underlying properties with (limited) data that are manifestations of those parameters in some way. In this case, the parameters we are after are 0 i(r) = p( x r). The data from the PDB are in the form of counts for y i(r), the number of amino acids of type r in the PDB that have secondary structure J.. There are 60 such numbers (20 amino acid types X 3 secondary structure types). We then have for each amino acid type a Bayesian expression for the posterior distribution for the values of xiiry. [Pg.329]

What can be done by predictive methods if the sequence search fails to reveal any homology with a protein of known tertiary structure Is it possible to model a tertiary structure from the amino acid sequence alone There are no methods available today to do this and obtain a model detailed enough to be of any use, for example, in drug design and protein engineering. This is, however, a very active area of research and quite promising results are being obtained in some cases it is possible to predict correctly the type of protein, a, p, or a/p, and even to derive approximations to the correct fold. [Pg.350]

Figure 17.2 An example of prediction of the conformations of three CDR regions of a monoclonal antibody (top row) compared with the unrefined x-ray structure (bottom row). LI and L2 are CDR regions of the light chain, and HI is from the heavy chain. The amino acid sequences of the loop regions were modeled by comparison with the sequences of loop regions selected from a database of known antibody structures. The three-dimensional structure of two of the loop regions, LI and L2, were in good agreement with the preliminary x-ray structure, whereas HI was not. However, during later refinement of the x-ray structure errors were found in the conformations of HI, and in the refined x-ray structure this loop was found to agree with the predicted conformations. In fact, all six loop conformations were correctly predicted in this case. (From C. Chothia et al.. Science 233 755-758, 1986.)... Figure 17.2 An example of prediction of the conformations of three CDR regions of a monoclonal antibody (top row) compared with the unrefined x-ray structure (bottom row). LI and L2 are CDR regions of the light chain, and HI is from the heavy chain. The amino acid sequences of the loop regions were modeled by comparison with the sequences of loop regions selected from a database of known antibody structures. The three-dimensional structure of two of the loop regions, LI and L2, were in good agreement with the preliminary x-ray structure, whereas HI was not. However, during later refinement of the x-ray structure errors were found in the conformations of HI, and in the refined x-ray structure this loop was found to agree with the predicted conformations. In fact, all six loop conformations were correctly predicted in this case. (From C. Chothia et al.. Science 233 755-758, 1986.)...
X-ray structures are determined at different levels of resolution. At low resolution only the shape of the molecule is obtained, whereas at high resolution most atomic positions can be determined to a high degree of accuracy. At medium resolution the fold of the polypeptide chain is usually correctly revealed as well as the approximate positions of the side chains, including those at the active site. The quality of the final three-dimensional model of the protein depends on the resolution of the x-ray data and on the degree of refinement. In a highly refined structure, with an R value less than 0.20 at a resolution around 2.0 A, the estimated errors in atomic positions are around 0.1 A to 0.2 A, provided the amino acid sequence is known. [Pg.392]

An amino acid having the constitution shown has been isolated from horse chestnuts. It is configurationally related to L-proline and has the R configxuation at C-3. Write a stereochemically correct representation for this compoimd. [Pg.121]

The last comprehensive review of the chemistry of oxazolones covered the literature through 1954. Most of the studies up to that time stemmed from either interest in the role of azlactones as precursors of a-amino acids and peptides or the monumental studies on penicillin, which, for a time, was thought to possess an oxazolone ring, rather than the correct jS-lactam moiety. [Pg.75]

Molecules like lactic acid, alanine, and glyceraldehyde are relatively simple because each has only one chirality center and only two stereoisomers. The situation becomes more complex, however, with molecules that have more than one chirality center. As a general rule, a molecule with n chirality centers can have up to 2n stereoisomers (although it may have fewer, as we ll see shortly). Take the amino acid threonine (2-amino-3-hydroxybutanoic acid), for example. Since threonine has two chirality centers (C2 and C3), there are four possible stereoisomers, as shown in Figure 9.10. Check for yourself that the R,S configurations are correct. [Pg.302]

As each successive codon on mRNA is read, different tRNAs bring the correct amino acids into position for enzyme-mediated transfer to the growing... [Pg.1109]

Anticodon (Section 28.5) A sequence of three bases on tRNA that reads the codons on mRNA and brings the correct amino acids into position for protein synthesis. [Pg.1236]

Since it is possible to differentiate well-preserved from badly preserved collagen through amino acid analysis and gel electrophoresis, it is also possible to determine which bone samples are likely to give erroneous isotopic ratios. At least for 8 C, it should be possible to estimate the in vivo isotopic signature by correcting the changed amino acid concentrations of the collagen extract. This way, a reasonable approach to the reconstruction of pale-odiet should be possible. [Pg.184]


See other pages where Amino-acids corrected is mentioned: [Pg.74]    [Pg.176]    [Pg.198]    [Pg.859]    [Pg.74]    [Pg.176]    [Pg.198]    [Pg.859]    [Pg.287]    [Pg.334]    [Pg.2816]    [Pg.218]    [Pg.239]    [Pg.536]    [Pg.100]    [Pg.232]    [Pg.150]    [Pg.48]    [Pg.503]    [Pg.288]    [Pg.294]    [Pg.100]    [Pg.135]    [Pg.246]    [Pg.350]    [Pg.390]    [Pg.97]    [Pg.149]    [Pg.161]    [Pg.597]    [Pg.14]    [Pg.472]    [Pg.341]    [Pg.41]    [Pg.173]    [Pg.184]    [Pg.189]    [Pg.157]    [Pg.287]    [Pg.288]   
See also in sourсe #XX -- [ Pg.430 ]




SEARCH



Acid corrections

Protein Digestibility-Corrected Amino Acid Score

Protein digestibility corrected amino acid score PDCAAS)

© 2024 chempedia.info