Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amine nucleophiles stereochemistry

Alkenes can be palladated to yield a complex which can be opened trans by an amine nucleophile. The resulting o-pidladium species can be woiked up oxidatively to yield an amino alcohol (as its acetate ester). This depalladation occurs with inversion, yielding overall cis stereochemistry (Scheme 54). If the acetic acid in step iii is replaced with phenol, a -phenoxyamine is produced. [Pg.490]

The starting material in the first reaction has a plane of symmetry so it is achiral the stereochemistry shows only which diastereoisomer we have. Attack by the amine nucleophile at either end of the epoxide (the two ends are the same) must take place from underneath for inversion to occur. The product is a single diastereoisomer but cannot, of course, be a single enantiomer so it doesn t matter which enantiomer you have drawn. The stereochemistry of the Ph group cannot change—it is just a spectator. [Pg.143]

Many reactions of amines with palladium- and platinum-olefin complexes have been reported. Akermark showed that nucleophiles add to palladium-olefin complexes to generate aminoalkyl complexes, as shown by the example in Equation 11.26. In this case, reactions of a bis-olefin dichloropalladium complex with amines occurs by splitting of the chloro-bridged dimer by the first equivalent of amine to give a neutral olefin-ligated palladium-amine complex that undergoes attack of the coordinated alkene by a second equivalent of amine. The stereochemistry of the amination is cleanly trans. Akermark and Zetterberg isolated and characterized by C NMR spectroscopy the a-alkyl complexes formed by the amination of both cis- and frans-2-butene, and the stereochemistry of the product alkyl complexes results from external attack by amines, as shown in Scheme 11.5. [Pg.431]

Many studies of the addition of nucleophiles to palladium-allyl complexes have been conducted. Hayashi has shown that the additions of stabilized anions, such as malonate anions or amine nucleophiles, to chiral, non-racemic allyl complexes occur with inversion of configuration.Addition of excess phosphine and either diethyl malonate or dimethylamine to a chiral, non-racemic allyl complex results in nucleophilic attack with nearly complete inversion. The reaction with sodium dimethylmalonate is shown at the right of Equation 11.40. In contrast, nonstabilized carbanions such as allyl or phenyl magnesium chloride react with the same Ti -allylpalladium complex with retention of configuration as shown at the left of Equation 11.40. The stereochemistry from reaction of the Grignard reagents likely results from nucleophilic attack at the metal, followed by reductive elimination. [Pg.437]

Based on the above-mentioned stereochemistry of the allylation reactions, nucleophiles have been classified into Nu (overall retention group) and Nu (overall inversion group) by the following experiments with the cyclic exo- and ent/n-acetales 12 and 13[25], No Pd-catalyzed reaction takes place with the exo-allylic acetate 12, because attack of Pd(0) from the rear side to form Tr-allyl-palladium is sterically difficult. On the other hand, smooth 7r-allylpalladium complex formation should take place with the endo-sWyWc acetate 13. The Nu -type nucleophiles must attack the 7r-allylic ligand from the endo side 14, namely tram to the exo-oriented Pd, but this is difficult. On the other hand, the attack of the Nu -type nucleophiles is directed to the Pd. and subsequent reductive elimination affords the exo products 15. Thus the allylation reaction of 13 takes place with the Nu nucleophiles (PhZnCl, formate, indenide anion) and no reaction with Nu nucleophiles (malonate. secondary amines, LiP(S)Ph2, cyclopentadienide anion). [Pg.294]

The smooth intramolecular nucleophilic displacement of biphenyl carboxylic acids leading to benzocoumarins (See Section II.A.) inspired also investigation of the behavior of similar diphenyl ether, diphenyl sulfide and A-methyldiphenyl amine derivatives 458 under similar conditions. However, all these attempts to achieve cyclization to tricyclic compounds 459 were unsuccessful, probably due to the unfavorable stereochemistry for the formation of the required seven-mem-bered transition states and also to the presence of the deactivating bridge groups X (Eq. 42) [68JCS(C)1030]. [Pg.240]

The transformation proceeds with excellent stereoselectivity by kinetic formation of the 2,5-trans-disubstituted pyrrolidine 2-328 [182]. The tertiary amine can now initiate a nucleophilic backside displacement of the vicinal iodide in 2-328, leading to an aziridinium salt 2-329 [183]. This event ensures a net retention of the stereochemistry at C-13 in the following attack of the ester carbonyl in the butyrolactone ring closure to give 2-330. [Pg.99]

Backwall and coworkers have extensively studied the stereochemistry of nucleophilic additions on 7r-alkenic and ir-allylic palladium(II) complexes. They concluded that nucleophiles which preferentially undergo a trans external attack are hard bases such as amines, water, alcohols, acetate and stabilized carbanions such as /3-diketonates. In contrast, soft bases are nonstabilized carbanions such as methyl or phenyl groups and undergo a cis internal nucleophilic attack at the coordinated substrate.398,399 The pseudocyclic alkylperoxypalladation procedure occurring in the ketonization of terminal alkenes by [RCC PdOOBu1], complexes (see Section 61.3.2.2.2)42 belongs to internal cis addition processes, as well as the oxidation of complexed alkenes by coordinated nitro ligands (vide in/ra).396,397... [Pg.363]

Investigation of the stereochemistry of the nucleophilic addition of amines to 1,3-dienylsulfone revealed that the Z/E ratios of the resulting allylic sulfones varied with amines, solvents, temperature, and concentrations. The predominant formation of (Z)- (g) isomer was rationalized by a syn-eiiecV, which could be mainly regarded as a result of the njo —> rt interactions.184... [Pg.353]

Once the leaving group has been introduced with the proper stereochemistry, it can be displaced by a nitrogen nucleophile suitable for subsequent conversion to an amine. [Pg.638]

This means that the chiral catalyst participates in nucleophilic attack on an achiral acyl donor to afford a reactive chiral acyl salt. Nucleophilic attack on this salt by an appropriate nucleophile (an alcohol, amine or 7r-nucleophile) then provides the acylated product and regenerates the catalyst. This latter step determines the stereochemistry, but knowledge of the precise mechanism by which stereochemical information is transferred in most of these processes is still rather limited. [Pg.291]

Iron complexes can also catalyze allylic amination [31,32]. Enders et al. have demonstrated the nucleophilic addition of various acyclic and cyclic amines to the optically active l-methoxycarbonyl-3-methyl-(T)3-allyl)-tetracarbonyliron cation 49 formed in high yield from reaction of 48 with iron carbonyls. Oxidative removal of the tetracarbonyliron group by reaction with CAN gives 50 with high optical purity and retention of the stereochemistry (Eq. (12)) [31]. The reaction proceeds well for the different amines, and has been used for the synthesis of a compound showing cytotoxic activity against diverse cell lines [31b]. [Pg.14]


See other pages where Amine nucleophiles stereochemistry is mentioned: [Pg.369]    [Pg.370]    [Pg.585]    [Pg.622]    [Pg.1010]    [Pg.816]    [Pg.671]    [Pg.370]    [Pg.88]    [Pg.204]    [Pg.331]    [Pg.471]    [Pg.358]    [Pg.70]    [Pg.73]    [Pg.300]    [Pg.525]    [Pg.644]    [Pg.565]    [Pg.565]    [Pg.140]    [Pg.265]    [Pg.88]    [Pg.16]    [Pg.88]    [Pg.111]    [Pg.851]    [Pg.1045]    [Pg.423]    [Pg.267]    [Pg.276]    [Pg.134]    [Pg.170]   
See also in sourсe #XX -- [ Pg.622 , Pg.623 ]

See also in sourсe #XX -- [ Pg.4 , Pg.622 , Pg.623 ]

See also in sourсe #XX -- [ Pg.4 , Pg.622 , Pg.623 ]




SEARCH



Amines, nucleophilicity

Nucleophile amines

Nucleophiles amines

Nucleophilic amination

Nucleophilic amines

© 2024 chempedia.info