Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amine enamine formation from aldehydes

Enamines derived from aldehydes can usually be obtained by the reaction of 2 equivalents of a secondary amine with the carbonyl compound, in the presence of anhydrous potassium carbonate, followed by pyrolytic distillation of the aminal with elimination of one of the amine groups (10,15, 30-36). Ketones are directly converted to enamines under the conditions of aminal formation. The azeotropic removal of water with excess aldehyde has also been described (32,37). [Pg.317]

Mechanism of enamine formation by reaction of an aldehyde or ketone with a secondary amine, R2NH. The iminium ion intermediate has no hydrogen attached to N and so must lose H+ from the carbon two atoms away. [Pg.713]

There is a distinct relationship between keto-enol tautomerism and the iminium-enamine interconversion it can be seen from the above scheme that enamines are actually nitrogen analogues of enols. Their chemical properties reflect this relationship. It also leads us to another reason why enamine formation is a property of secondary amines, whereas primary amines give imines with aldehydes and ketones (see Section 7.7.1). Enamines from primary amines would undergo rapid conversion into the more stable imine tautomers (compare enol and keto tautomers) this isomerization cannot occur with enamines from secondary amines, and such enamines are, therefore, stable. [Pg.367]

The reaction is exactly analogous to the chemical aldol reaction (also shown), but it utilizes an enamine as the nucleophile, and it can thus be achieved under typical enzymic conditions, i.e. around neutrality and at room temperature. There is one subtle difference though, in that the enzyme produces an enamine from a primary amine. We have indicated that enamine formation is a property of secondary amines, whereas primary amines react with aldehydes and ketones to form imines (see Section 7.7.1). Thus, a further property of the enzyme is to help stabilize the enamine tautomer relative to the imine. [Pg.369]

This catalytic enamine formation is limited to aldehydes and ketones as starting materials - it does not appear to be possible to prepare corresponding enamines , i.e. A,0-ketene acetals, from esters in this fashion. Nevertheless, the preparation of simple, reactive nucleophiles from normally electrophilic species, aldehydes and ketones, in a catalytic fashion sounds highly attfactive. Furthermore, the catalytic nature of these reactions allows the use of chiral amines, and the further possibility that these reactions can be rendered enantioselective. Enamines react readily with a wide variety of electrophiles, and the range of reactions that can be catalyzed by enamine catalysis is summarized in Scheme 2. [Pg.30]

The formation of covalent substrate-catalyst adducts might occur, e.g., by single-step Lewis-acid-Lewis-base interaction or by multi-step reactions such as the formation of enamines from aldehydes and secondary amines. The catalysis of aldol reactions by formation of the donor enamine is a striking example of common mechanisms in enzymatic catalysis and organocatalysis - in class-I aldolases lysine provides the catalytically active amine group whereas typical organocatalysts for this purpose are secondary amines, the most simple being proline (Scheme 2.2). [Pg.10]

Reymond and Chen88 have investigated the same set of antibodies for their ability to catalyze bimolecular aldol condensation reactions. The antibodies were assayed individually at pH 8.0 for the formation of aldol 111 from aldehyde 109 and acetone. None catalyzed the direct reaction, but in the presence of amine 110 three anti-52a and three anti-52b antibodies showed modest activity. In analogy with natural type I aldolase enzymes, the reaction is believed to occur by formation of an enamine from acetone and the amine, followed by rate-determining condensation of the enamine with the aldehyde. As in the previous example, the catalyst, which was characterized in detail, is not very efficient in absolute terms ( cat = 3 x 10-6 s 1 for the anti-52b antibody 72D4), but it is approximately 600 times more effective than amine alone. Moreover, the reactions with the antibody are stereoselective The enamine adds only to the si face of the aldehyde to give... [Pg.112]

The reaction of an aldehyde or a ketone with a secondary amine follows exactly the same mechanism as the reaction with a primary amine (see Figure 18.3) until the final step. Unlike the case with a primary amine, the nitrogen of the iminium ion does not have a proton that can be removed to produce a stable imine. Therefore, a proton is removed from an adjacent carbon, resulting in the formation of an enamine. Enamine formation is illustrated in the following equations. In each case the equilibrium is driven toward the products by removal of water. [Pg.769]

The reaction of a primary amine with a ketone to form an imine is generally quite straightforward, with the techniques typically used for water removal in the formation of enamines (see Section 4.1.2.1) also applicable here. As with the formation of enamines from aldehydes, preparation of the corresponding aldehyde imines can be difficult, especially with relatively unhindered aldehydes where formation of the double amine addition product can occur. However, these aminals often undergo loss of one amine unit thermally (typically during distillation) to generate the imine (Scheme 16). ... [Pg.719]

The mechanism for enamine formation is exactly the same as that for imine formation, until the last step of the reaction. When a primary amine reacts with an aldehyde or a ketone, the protonated imine loses a proton from nitrogen in the last step of the reaction, forming a neutral imine. However, when the amine is secondary, the positively charged nitrogen is not bonded to a hydrogen. A stable neutral molecule is obtained by removing a proton from the a-carbon of the compound derived from the carbonyl compound. An enamine is the result. [Pg.750]

Aldehydes and ketones react with primary amines to form imines and with secondary amines to form enamines. The mechanisms are the same, except for the site from which a proton is lost in the last step of the reaction. Imine and enamine formation are reversible imines and enamines are hydrolyzed under acidic conditions back to the carbonyl compound and amine. A pH-rate profile is a plot of the observed rate constant as a function of the pH of the reaction mixture. Hydroxide ion and heat differentiate the Wolff-Kishner reduction from ordinary hydrazone formation. [Pg.774]

There are numerous reports of hydrofonnylation reactions where an amine substituent in the substrate condenses with the aldehyde product to form a heterocyclic ring (Fig. 6). Intramolecular hydroaminomethylation reactions are often referred to as cyclohydrocarbonylation reactimis. A Cbz-protected homoallylic amine underwent cyclohydrocarbonylatiOTi with Rh-biphephos to form the natural product, ( )-coniine (Fig. 6, 13) [25]. Alper recently reported the formation the seven-membered ring of 2-benzazepines (Fig. 6, 14) by hydroformylation of 2-isopropenylbenzaldehydes in the presence of anilines [26]. Intramolecular hydroaminomethylation of 2-isopropenylanilines produces 1,2,3,4-tetrahydroquinolines (Fig. 6, 15) [27]. In some instances, the enamine derived from intramolecular condensation of the resulting aldehyde is desired. For example, the synthesis of a key intermediate (Fig. 6,16) in the synthesis of a series of ACE inhibitors was... [Pg.41]

The regio- and the stereoselectivity of proline-catalyzed a-electrophilic substitution of carbonyl compounds can therefore be successfully explained by the oxazolidinone model, although the diastereoselectivity of the aldol and Mannich reactions was not taken into account in Seebach s discussion. Moreover, the model also could explain the autoinductive effects observed by Blackmond in the proline-catalyzed nitroso aldol and a-amination reactions of aldehydes [29, 31], by simply assuming that the oxazolidinone product acts as a base in the rate-determining enamine formation step. Kinetic resolution of proline, leading to chirality amplification effects, would be accounted for by the greater thermodynamic stability of the matched oxazolidinone product. In fact, the formation of Seebach s oxazolidi-nones, rather than enamines or iminium ion intermediates, from ketones and proline in DMSO solution had been described by List et al. in 2004 [23], but they concluded that this was a parasitic equilibrium leading to an unproductive intermediate. On the other hand, the product oxazolidinone in the proline-catalyzed a-amination of... [Pg.23]

In continuation of our efforts in the development of new synthetic routes for the synthesis of heterocyclic compounds using nanocatalysts, we have recently reported a novel synthesis of 3,4,5-trisubstituted furan-2(5H)-one derivatives by the one-pot three-component condensation of aldehydes, amines, and dimethyl acetylenedicar-boxylate (DMAD) by nsing nanoparticulate ZnO as a catalyst in Et0H H20 (1 1) at 90°C (Scheme 9.30) (Tekale et al. 2013). Almost all the employed aldehydes and amines reacted smoothly to afford excellent yields of the prodncts, irrespective of the natnre of the snbstitnent present on the aldehyde or amine. The plausible mechanism for the synthesis of furan-2(5 f)-ones using nano-ZnO is depicted in Figure 9.3. The catalyst promotes the formation of enamines (99) from amines (97) and DMAD (96). ZnO polarizes the carbonyl group of aldehydes to form a polarized adduct (100) which reacts with the enamines, followed by cyclization with the elimination of methanol molecules to afford the corresponding trisubstituted furanone derivatives (98). [Pg.269]

Secondary amines react with aldehydes and ketones to form enamines. The name enamine is derived from -en- to indicate the presence of a carbon-carbon double bond and -amine to indicate the presence of an amino group. An example is enamine formation between cyclohexanone and piperidine, a cyclic secondary amine. Water is removed by a Dean-Stark trap (Figure 16.1), which forces fhe equilibrium to the right. [Pg.660]

Briefly, the mechanism for formation of an enamine is very similar to that for the formation of an imine. In the first step, nucleophilic addition of the secondary amine to the carbonyl carbon of the aldehyde or ketone followed by proton transfer from nitrogen to oxygen gives a tetrahedral carbonyl addition compound. Acid-catalyzed dehydration gives the enamine. At this stage, enamine formation differs from imine formation. The nitrogen has no proton to lose. Instead, a proton is lost from the a-carbon of the ketone or aldehyde portion of fhe molecule in an elimination reaction. [Pg.660]

SOMO Activation Within the field of aminocatalysis, asymmetric organo-SOMO (singly occupied molecular orbital) catalysis has recently emerged as a powerful technique for the preparation of optically active compounds. In this context, MacMillan and coworkers described in 2008 the formation of y-oxyaldehydes from aldehydes and styrenes by organo-SOMO catalysis [25]. The condensation between the amine catalyst 46 and an aldehyde gave rise to an enamine intermediate, which was then oxidized by ceric ammonium nitrate (CAN) to give a radical cation. Reaction of this radical cation with a nonactivated olefin, namely styrene, led to the... [Pg.353]

Reaction of an aldehyde or ketone with a secondary amine, R2NH, rather than a primary amine yields an enamine. The process is identical to imine formation up to the iminium ion stage, but at this point there is no proton on nitrogen that can be lost to form a neutral imine product. Instead, a proton is lost from the neighboring carbon (the a carbon), yielding an enamine (Figure 19.10). [Pg.713]

Abstract Aldehydes obtained from olefins under hydroformylation conditions can be converted to more complex reaction products in one-pot reaction sequences. These involve heterofunctionalization of aldehydes to form acetals, aminals, imines and enamines, including reduction products of the latter in an overall hydroaminomethylation. Furthermore, numerous conversions of oxo aldehydes with additional C.C-bond formation are conceivable such as aldol reactions, allylations, carbonyl olefinations, ene reactions and electrophilic aromatic substitutions, including Fischer indole syntheses. [Pg.74]


See other pages where Amine enamine formation from aldehydes is mentioned: [Pg.368]    [Pg.303]    [Pg.48]    [Pg.152]    [Pg.520]    [Pg.89]    [Pg.520]    [Pg.236]    [Pg.889]    [Pg.282]    [Pg.889]    [Pg.757]    [Pg.408]    [Pg.206]    [Pg.2210]    [Pg.245]    [Pg.251]    [Pg.57]    [Pg.366]    [Pg.402]    [Pg.540]    [Pg.138]    [Pg.400]    [Pg.201]    [Pg.91]   


SEARCH



Aldehydes amination

Aldehydes enamines

Aldehydes formation

Aldehydes from amines

Aldehydes from formates

Aminal formation

Aminals, formation

Aminations aldehydes

Amines aldehydes

Amines formation

Enamines formation

Enamines from aldehydes

From aminals

From amines

From enamines

© 2024 chempedia.info