Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amides stereochemistry

The application of the angular overlap method to MXg chromophores of trigonal bipyramidal and square p3u-amidal stereochemistry leads to the patterns of Fig. 2 for the energies of the antibonding "d molecular orbitals (dc). The crystal field model leads to a similar pattern. [Pg.55]

Alexander and Gray 70) and Caulton 71) have studied the electronic spectrum of the species [Co(CN)5] . Although direct proof is lacking, it has been affirmed that the optical and E. P. R. spectra are consistent with an essentially square p5u-amidal stereochemistry and are inconsistent with a trigonal bipyramidal structure (70). It has been claimed, however, that this species may be actually six-coordinate in water, i. e. [Co(CN)5(H20)]3- (72). The spectrum of [Co(CN)5]3. has four bands of low intensity between 10 and 32 kK, as well as two high intensity bands at higher frequence (Table 7). [Pg.85]

In his cephalosporin synthesis methyl levulinate was condensed with cysteine in acidic medium to give a bicyclic thiazolidine. One may rationalize the regioselective formation of this bicycle with the assumption that in the acidic reaction mixture the tMoI group is the only nucleophile present, which can add to the ketone. Intramolecular amide formation from the methyl ester and acid-catalyzed dehydration would then lead to the thiazolidine and y-lactam rings. The stereochemistry at the carboxylic acid a-... [Pg.313]

The stereochemistry of pyrazolidines has briefly been discussed in Section 4.04.1.4.3. The pyrazolidine ring in (429) in the crystal state is not planar and the configuration about the amide bond is E as represented. [Pg.257]

Proteins are large biomolecules made up of a-amino acid residues linked together by amide, or peptide, bonds. Chains with fewer than 50 amino acids are often called peptides, while the term protein is reserved for larger chains. Twenty amino acids are commonly found in proteins all are a-amino acids, and all except glycine have stereochemistry similar to that of l sugars. In neutral solution, amino acids exist as dipolar zwitterions. [Pg.1049]

N,O-acetal intermediate 172, y,<5-unsaturated amide 171. It is important to note that there is a correspondence between the stereochemistry at C-41 of the allylic alcohol substrate 173 and at C-37 of the amide product 171. Provided that the configuration of the hydroxyl-bearing carbon in 173 can be established as shown, then the subsequent suprafacial [3,3] sigmatropic rearrangement would ensure the stereospecific introduction of the C-37 side chain during the course of the Eschenmoser-Claisen rearrangement, stereochemistry is transferred from C-41 to C-37. Ketone 174, a potential intermediate for a synthesis of 173, could conceivably be fashioned in short order from epoxide 175. [Pg.607]

In the case of the amide 11 (R = CI13) derived from 2-oxopropanoic amid and amine G the chelation-controlled product is predominantly formed with all organometallic reagents. No reversal of the stereochemistry is observed, presumably for the same steric reason as with the corresponding pyruvic amides derived from amines E and F. [Pg.102]

Niobium, tris(diethyldilhiocarbamato)oxy-stereochemistry, 1,82 structure, 1, 83 Niobium, tris(oxa ato)oxy-stereochcmistry, 1, 82 Niobium, tris(phcnylcncdirhio)-structure, 1, 63 Niobium alanate, 3, 685 Niobium complexes alkyl alkoxy reactions, 2, 358 amides, 2,164 properties, 2, 168 synthesis, 2, 165 applications, 6,1014 carbamicacid, 2, 450 clusters, 3, 672,673,675 hexamethylbenzene ligands, 3, 669 cyanides synthesis, 2, 9 p-dinitrogen, 3, 418 fluoro... [Pg.177]

The formation of an intramolecular H-bond is supported by the slower rate of amide proton exchange in pyridine/10% CD3OD. The influence of the stereochemistry on turn formation and turn geometry has been investigated. Seebach and coworkers have demonstrated that dipeptide sequences consisting... [Pg.93]

Amine (1) was needed to study the stereochemistry of alkylation reactions. The primary alkyl group had best come from an amide or an Imine while the secondary alkyl group must come from an imine. The disconnections may be carried out in any order. [Pg.74]

Note also the stereochemistry. In some cases, two new stereogenic centers are formed. The hydroxyl group and any C(2) substituent on the enolate can be in a syn or anti relationship. For many aldol addition reactions, the stereochemical outcome of the reaction can be predicted and analyzed on the basis of the detailed mechanism of the reaction. Entry 1 is a mixed ketone-aldehyde aldol addition carried out by kinetic formation of the less-substituted ketone enolate. Entries 2 to 4 are similar reactions but with more highly substituted reactants. Entries 5 and 6 involve boron enolates, which are discussed in Section 2.1.2.2. Entry 7 shows the formation of a boron enolate of an amide reactions of this type are considered in Section 2.1.3. Entries 8 to 10 show titanium, tin, and zirconium enolates and are discussed in Section 2.1.2.3. [Pg.67]

The stereochemistry of reduction by homogeneous catalysts is often controlled by functional groups in the reactant. Delivery of hydrogen occurs cis to a polar functional group. This behavior has been found to be particularly characteristic of an iridium-based catalyst that contains cyclooctadiene, pyridine, and tricyclohexylphosphine as ligands, known as the Crabtree catalyst 6 Homogeneous iridium catalysts have been found to be influenced not only by hydroxy groups, but also by amide, ester, and ether substituents.17... [Pg.375]

The stereochemistry of the silyl ketene acetal can be controlled by the conditions of preparation. The base that is usually used for enolate formation is lithium diisopropyl-amide (LDA). If the enolate is prepared in pure THF, the F-enolate is generated and this stereochemistry is maintained in the silyl derivative. The preferential formation of the F-enolate can be explained in terms of a cyclic TS in which the proton is abstracted from the stereoelectronically preferred orientation perpendicular to the carbonyl plane. The carboxy substituent is oriented away from the alkyl groups on the amide base. [Pg.568]

A. Claisen Rerrangements of Ketene Aminats and Imidates. A reaction that is related to the orthoester Claisen rearrangement utilizes an amide acetal, such as dimethylacetamide dimethyl acetal, in the exchange reaction with allylic alcohols.257 The products are y, 8-unsaturated amides. The stereochemistry of the reaction is analogous to the other variants of the Claisen rearrangement.258... [Pg.576]

A TS represented by structure L accounts for this stereochemistry. Such an arrangement is favored by ion pairing that would bring the amide anion and lithium cation into close proximity. Simultaneous coordination of the lithium ion at the epoxide results in a syn elimination. [Pg.1115]

In recent years, cross-coupling methodology has emerged as a viable tool for enamide synthesis, and, indeed, there are a number of published protocols which employ palladium- or copper-catalyzed stereospecific amidations of vinyl halides [17]. For example, Buchwald and coworkers had recently shown that a copper-catalyzed cross-coupling of vinyl bromides or iodides proceeded with retention of stereochemistry (Scheme 9.16), though the only example using a tetrasubstituted vinyl halide, 23, lacked the need for any stereochemical control in the halide portion [18]. Based on this it seemed feasible that the desired enamide 22 could potentially be assembled via a comparable coupling between amide 24 and a stere-odefined vinyl halide such as 25. [Pg.255]


See other pages where Amides stereochemistry is mentioned: [Pg.525]    [Pg.57]    [Pg.477]    [Pg.481]    [Pg.536]    [Pg.19]    [Pg.22]    [Pg.75]    [Pg.286]    [Pg.156]    [Pg.109]    [Pg.6]    [Pg.182]    [Pg.618]    [Pg.35]    [Pg.136]    [Pg.156]    [Pg.195]    [Pg.335]    [Pg.232]    [Pg.79]    [Pg.21]    [Pg.1208]    [Pg.79]    [Pg.242]    [Pg.260]    [Pg.325]    [Pg.593]    [Pg.832]    [Pg.129]    [Pg.143]    [Pg.644]    [Pg.194]   
See also in sourсe #XX -- [ Pg.623 ]




SEARCH



Stereochemistry chiral unsaturated amides

© 2024 chempedia.info