Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amides alcoholysis

Amides. Alcoholysis of amides provides another method for synthesizing esters ... [Pg.380]

The zinc complex of a tripodal N2S20 pentadentate ligand undergoes amide alcoholysis of a coordinated amide group.893 Examples of amide hydrolysis are known for other ligand systems.894... [Pg.1228]

Metal-amide alcoholysis proceeds similarly e.g., the dimethylamidoditungsten complexes react with ROH (R = Me, Et) forming the alkoxide complexes and amine ... [Pg.39]

As a class of compounds, nitriles have broad commercial utility that includes their use as solvents, feedstocks, pharmaceuticals, catalysts, and pesticides. The versatile reactivity of organonitnles arises both from the reactivity of the C=N bond, and from the abiHty of the cyano substituent to activate adjacent bonds, especially C—H bonds. Nitriles can be used to prepare amines, amides, amidines, carboxyHc acids and esters, aldehydes, ketones, large-ring cycHc ketones, imines, heterocycles, orthoesters, and other compounds. Some of the more common transformations involve hydrolysis or alcoholysis to produce amides, acids and esters, and hydrogenation to produce amines, which are intermediates for the production of polyurethanes and polyamides. An extensive review on hydrogenation of nitriles has been recendy pubHshed (10). [Pg.217]

Adiponitrile undergoes the typical nitrile reactions, eg, hydrolysis to adipamide and adipic acid and alcoholysis to substituted amides and esters. The most important industrial reaction is the catalytic hydrogenation to hexamethylenediarnine. A variety of catalysts are used for this reduction including cobalt—nickel (46), cobalt manganese (47), cobalt boride (48), copper cobalt (49), and iron oxide (50), and Raney nickel (51). An extensive review on the hydrogenation of nitriles has been recendy pubUshed (10). [Pg.220]

Aromatic ethers and furans undergo alkoxylation by addition upon electrolysis in an alcohol containing a suitable electrolyte.Other compounds such as aromatic hydrocarbons, alkenes, A -alkyl amides, and ethers lead to alkoxylated products by substitution. Two mechanisms for these electrochemical alkoxylations are currently discussed. The first one consists of direct oxidation of the substrate to give the radical cation which reacts with the alcohol, followed by reoxidation of the intermediate radical and either alcoholysis or elimination of a proton to the final product. In the second mechanism the primary step is the oxidation of the alcoholate to give an alkoxyl radical which then reacts with the substrate, the consequent steps then being the same as above. The formation of quinone acetals in particular seems to proceed via the second mechanism. ... [Pg.94]

The most common reactions of carboxylic acid derivatives are substitution by water (hydrolysis) to yield an acid, by an alcohol (alcoholysis) to yield an ester, by an amine (aminolysis) to yield an amide, by hydride ion to yield an alcohol (reduction), and by an organometallic reagent to yield an alcohol (Grignard reaction). [Pg.826]

Acid chloride, alcohols from, 804 alcoholysis of, 802-803 amides from, 803-804 amines from, 933-935 amjnolysis of, 803-804 carboxylic acids from, 802 electrostatic potential map of, 791... [Pg.1281]

Lipases are generally inactive on the amide bond. One notable exception is the hydrolysis and alcoholysis of P-lactams by CAL-B [108-112]. For example, CAL-B... [Pg.148]

In a similar way to the aminolysis of the P-N bond mentioned above (Scheme 9), alcoholysis of phosphinous amides leads to the alkyl esters of the respective phosphinous acids [30, 121]. This reaction occurs with inversion of the absolute configuration of the phosphorus atom, and has been used in a synthetic sequence leading to optically active tertiary phosphanes 22 [122] (Scheme 23). [Pg.90]

The alcoholysis and transamination of various aminophosphines have been studied as functions of the basicity of the attacking nucleophile and the substituents on phosphorus. As might be expected the reaction is facilitated by electron-withdrawing groups on phosphorus. The hydrolysis of tris(dimethylamino)phosphine (90) to phosphorous acid has been investigated using thin-layer chromatography and the amides (91) and (92) have been identified as intermediates. [Pg.85]

The compounds referred to as azolides are heterocyclic amides in which the amide nitrogen is part of an azole ring, such as imidazole, pyrazole, triazole, tetrazole, benzimidazole, benzotriazole, and their substituted derivatives. In contrast to normal amides, most of which show particularly low reactivities in such nucleophilic reactions as hydrolysis, alcoholysis, aminolysis, etc., the azolides are characterized by high reactivities in reactions with nucleophiles within the carbonyl group placing these compounds at about the same reactivity level as the corresponding acid chlorides or anhydrides. 11... [Pg.14]

Thus, the family of azolides represents a versatile system of reagents with graduated reactivity, as will be shown in the following section by a comparison of kinetic data. Subsequent chapters will then demonstrate that this reactivity gradation is found as well for alcoholysis to esters, aminolysis to amides and peptides, hydrazinolysis, and a great variety of other azolide reactions. The preparative value of azolides is not limited to these acyl-transfer reactions, however. For example, azolides offer new synthetic routes to aldehydes and ketones via carboxylic acid azolides. In all these reactions it is of special value that the transformation of carboxylic acids to their azolides is achieved very easily in most cases the azolides need not even be isolated (Chapter 2). [Pg.15]

For the mechanism of azolide hydrolysis under specific conditions like, for example, in micelles,[24] in the presence of cycloamyloses,[25] or transition metals,[26] see the references noted and the literature cited therein. Thorough investigation of the hydrolysis of azolides is certainly important for studying the reactivity of those compounds in chemical and biochemical systems.[27] On the other hand, from the point of view of synthetic chemistry, interest is centred instead on die potential for chemical transformations e.g., alcoholysis to esters, aminolysis to amides or peptides, acylation of carboxylic acids to anhydrides and of peroxides to peroxycarboxylic acids, as well as certain C-acylations and a variety of other preparative applications. [Pg.21]

The present procedure provides a facile and versatile synthesis, on large scale, of a variety of pyrrole-2-carboxylic acid derivatives without necessitating the use of moisture-sensitive organometallic reagents. The use of alcohols other than ethanol in the alcoholysis reaction provides virtually any desired ester. Ammonia or aliphatic amines readily give amides in high yields, and aqueous base can be used to give the free acid. [Pg.52]

Although the intramolecular aminocarbonylation described above is an extension of the standard amide-forming reaction, a different type of intramolecular aminocarbonylation has been studied, wherein the amine moiety adds across the olefin moiety activated by a Pd catalyst to generate /3-aminoalkyl-Pd species, followed by CO insertion and alcoholysis, forming a lactone or an ester. ... [Pg.536]


See other pages where Amides alcoholysis is mentioned: [Pg.129]    [Pg.347]    [Pg.129]    [Pg.347]    [Pg.182]    [Pg.33]    [Pg.83]    [Pg.128]    [Pg.488]    [Pg.488]    [Pg.1662]    [Pg.14]    [Pg.958]    [Pg.56]    [Pg.673]    [Pg.139]    [Pg.4]    [Pg.33]    [Pg.61]    [Pg.62]    [Pg.223]    [Pg.1476]    [Pg.16]    [Pg.226]   
See also in sourсe #XX -- [ Pg.488 ]

See also in sourсe #XX -- [ Pg.398 ]

See also in sourсe #XX -- [ Pg.81 ]




SEARCH



Acid-Catalyzed Amide Hydrolysis and Alcoholysis

Alcoholysis of amides

Amides, acidity alcoholysis

Phosphorus amides, alcoholysi

© 2024 chempedia.info