Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ambient temperature bonding

Applications. PRFs and RFs are used primarily in lumber laminating and ambient temperature bonding applications. PFs are used primarily in hardboard, plywood, oriented strand board (OSB), and wafeiboard. It is used to a small extent in particleboard. Because PFs generally do not develop the tack of UFs, they are not easily used on caulless particleboard lines. [Pg.605]

The polymers of the 2-cyanoacryhc esters, more commonly known as the alkyl 2-cyaiioacrylates, are hard glassy resins that exhibit excellent adhesion to a wide variety of materials. The polymers are spontaneously formed when their Hquid precursors or monomers are placed between two closely fitting surfaces. The spontaneous polymerisation of these very reactive Hquids and the excellent adhesion properties of the cured resins combine to make these compounds a unique class of single-component, ambient-temperature-curing adhesives of great versatiUty. The materials that can be bonded mn the gamut from metals, plastics, most elastomers, fabrics, and woods to many ceramics. [Pg.176]

The increased acidity of the larger polymers most likely leads to this reduction in metal ion activity through easier development of active bonding sites in siUcate polymers. Thus, it could be expected that interaction constants between metal ions and polymer sdanol sites vary as a function of time and the sihcate polymer size. The interaction of cations with a siUcate anion leads to a reduction in pH. This produces larger siUcate anions, which in turn increases the complexation of metal ions. Therefore, the metal ion distribution in an amorphous metal sihcate particle is expected to be nonhomogeneous. It is not known whether this occurs, but it is clear that metal ions and siUcates react in a complex process that is comparable to metal ion hydrolysis. The products of the reactions of soluble siUcates with metal salts in concentrated solutions at ambient temperature are considered to be complex mixtures of metal ions and/or metal hydroxides, coagulated coUoidal size siUca species, and siUca gels. [Pg.7]

Properties and Reactions. Amine boranes are usually colodess, crystalline compounds, which exhibit sharp melting points and thermal stability when pure. Primary and secondary amine boranes are generally soHds at ambient temperatures. With the exception of trimetbylamine borane, the ahphatic /-amine boranes are Hquids. The nature of the bonding in amine boranes has been the subject of theoretical investigations (21—23). [Pg.262]

Polyisobutylene has a similar chemical backbone to butyl rubber, but does not contain double carbon-carbon bonds (only terminal unsaturation). Many of its characteristics are similar to butyl rubber (ageing and chemical resistance, low water absorption, low permeability). The polymers of the isobutylene family have very little tendency to crystallize. Their strength is reached by cross-linking instead of crystallization. The amorphous structure of these polymers is responsible for their flexibility, permanent tack and resistance to shock. Because the glass transition temperature is low (about —60°C), flexibility is maintained even at temperatures well below ambient temperature. [Pg.584]

All of the types of repairs described can be accomplished using electron/X-ray curing and suitable electron-curable adhesive systems. The advantages ol using an electron accelerator are faster curing cycles, short turn-around time, and higher-temperature-resistant bonds, cured at ambient temperatures. [Pg.1026]

The side chain C=C double bond of 2,3,4,6,ll,lln-hexahydro-l//-pyrazino[l,2-i]isoquinoline-l,4-diones 354 was saturated by catalytic hydrogenation over Pd/C catalysts in EtOH to give 355 (98MIP7). 7-(2-Pyridylmethyl)amino derivative was obtained by reduction of 7-[(2-pyridylmethylene)amino]-2,3,11,11 n-tetrahydro-6//-pyrazino[l, 2-i]isoqui-noline-l,4-dione (356) with NaBH4 in EtOH at ambient temperature for 24 h. [Pg.303]

Many organic chemical transformations have been carried out in ionic liquids hydrogenation [4, 5], oxidation [6], epoxidation [7], and hydroformylation [8] reactions, for example. In addition to these processes, numerous synthetic routes involve a carbon-carbon (C-C) bond-forming step. As a result, many C-C bondforming procedures have been studied in ambient-temperature ionic liquids. Among those reported are the Friedel-Crafts acylation [9] and allcylation [10] reactions, allylation reactions [11, 12], the Diels-Alder reaction [13], the Heck reaction [14], and the Suzuld [15] and Trost-Tsuji coupling [16] reactions. [Pg.319]

Steels are normally ductile at ambient temperatures, although they are often close to brittle behaviour, as is indicated by the ductile-brittle transition temperature. If the conditions at the tip of a sharp crack are considered, it can be seen that brittle fracture will occur if it is easier to break the atomic bond at the tip of the crack than it is to emit a dislocation to blunt the crack (see Thompson and Lin ). As dislocation emission is more temperature sensitive than the bond strength it becomes more difficult at low temperatures and brittle fracture occurs. The very severe effects of hydrogen on the performance of steels can be attributed to its role in allowing brittle fracture... [Pg.1242]

Modern bonding systems usually consist of a primer coat, often with a secondary tie coat, plus a tacky solution to assist in the application of the rubber. The bonding systems currently in use are usually suitable both for autoclave vulcanisation and vulcanisation at 100°C with atmospheric pressure steam or hot water. Ambient vulcanisation bonding systems have to be chemically active at the lower temperatures and are therefore specialist in nature. [Pg.945]

A number of other chemistries which involve C-O bond cleavage have been reported.226 22 Druliner226 has reported on systems where NCO, 112, 113 or related species is the persistent radical. Homolysis rates for these systems were stated to he suitable for MMA polymerization at ambient temperature. The use of NCO has also been studied by Grande et al. z most recently for AA polymerization.2 0 Although control during AA homopolymerization was poor the process yielded NCO- terminated PAA that could be used to make PAA-block-PMMA.230... [Pg.483]

Thermal expansion — as elasticity — depends directly upon the strength of the intermolecular forces in the material. Strongly bonded materials usually expand little when heated, whereas the expansion of weak materials may be a hundred times as large. This general trend is confirmed by Table 5.1. The coefficient of thermal expansion a was found to be lower in the crosslinked polymers and higher in the less crosslinked or thermoplastic materials as observed by Nielsen [1], In addition, Table 5.1 presents the Young s moduli E of the polymers at ambient temperatures as well as the products a2E. The values of oc2E are all close to 13.1 Pa K 2 with a coefficient of variation of 1.6%. [Pg.333]

Six members of this series could be isolated in modest yields as highly air-sensitive, dark blue or dark purple crystalline solids for which analytical, spectroscopic, and single-crystal X-ray analyses were fully consistent with the side-on-biidged N2 structures shown in Scheme 102. These complexes show unusual structural features as well as a unique reactivity. An extreme degree of N = N bond elongation was manifested in rf(N-N) values of up to 1.64 A, and low barriers for N-atom functionalization allowed functionalization such as hydrogenation, hydrosilylation, and, for the first time, alkylation with alkyl bromides at ambient temperature. ... [Pg.259]


See other pages where Ambient temperature bonding is mentioned: [Pg.166]    [Pg.379]    [Pg.279]    [Pg.279]    [Pg.34]    [Pg.342]    [Pg.399]    [Pg.239]    [Pg.49]    [Pg.315]    [Pg.489]    [Pg.52]    [Pg.183]    [Pg.777]    [Pg.1010]    [Pg.1034]    [Pg.1060]    [Pg.1064]    [Pg.1065]    [Pg.231]    [Pg.9]    [Pg.339]    [Pg.320]    [Pg.533]    [Pg.940]    [Pg.626]    [Pg.725]    [Pg.14]    [Pg.491]    [Pg.47]    [Pg.341]    [Pg.343]    [Pg.1]    [Pg.208]    [Pg.149]    [Pg.174]    [Pg.23]   
See also in sourсe #XX -- [ Pg.605 ]




SEARCH



Ambient

Ambient temperatures

Bonding temperature

© 2024 chempedia.info