Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aluminum acetate calcium hydride

The required working time is 3 to 4 hours. All equipment is thoroughly dried prior to use and is flushed with an inert gas (argon or nitrogen). Commercial sodium hydroborate is used without purification. The dimethyl ether of diethylene glycol (diglyme) is refluxed over calcium hydride for 8 hours and subsequently distilled over lithium tetrahydroaluminate (lithium aluminum hydride). Commercial tri-n-butylamine is refluxed with acetic anhydride and distilled at atmospheric pressure. [Pg.142]

Related Reagents. Calcium Hydride Iron(III) Chloride-Sodium Hydride Lithium Aluminum Hydride Potassium Hydride Potassium Hydride-5-Butyllithium-(V,(V,(V, (V -Tetra-methylethylenediamine Potassium Hydride-Hexamethylphos-phoric Triatnide Sodium Borohydride Sodium Hydride-copper(II) Acetate-Sodium t-Pentoxide Sodium Hydride-nickel(II) Acetate-Sodium t-Pentoxide Sodium Hydride-palladium(II) Acetate-Sodium t-Pentoxide Tris(cyclopenta-dienyl)lanthanum-Sodium Hydride Lithium Hydride Sodium Telluride. [Pg.444]

Numerous methods for the synthesis of salicyl alcohol exist. These involve the reduction of salicylaldehyde or of salicylic acid and its derivatives. The alcohol can be prepared in almost theoretical yield by the reduction of salicylaldehyde with sodium amalgam, sodium borohydride, or lithium aluminum hydride by catalytic hydrogenation over platinum black or Raney nickel or by hydrogenation over platinum and ferrous chloride in alcohol. The electrolytic reduction of salicylaldehyde in sodium bicarbonate solution at a mercury cathode with carbon dioxide passed into the mixture also yields saligenin. It is formed by the electrolytic reduction at lead electrodes of salicylic acids in aqueous alcoholic solution or sodium salicylate in the presence of boric acid and sodium sulfate. Salicylamide in aqueous alcohol solution acidified with acetic acid is reduced to salicyl alcohol by sodium amalgam in 63% yield. Salicyl alcohol forms along with -hydroxybenzyl alcohol by the action of formaldehyde on phenol in the presence of sodium hydroxide or calcium oxide. High yields of salicyl alcohol from phenol and formaldehyde in the presence of a molar equivalent of ether additives have been reported (60). Phenyl metaborate prepared from phenol and boric acid yields salicyl alcohol after treatment with formaldehyde and hydrolysis (61). [Pg.293]

Byproducts of this rearrangement are cyclobutenes, cyclopropane derivatives and allenic alcohols. The ratio of these products depends on the substitution of the substrate and on the reaction conditions. For example, 3-methyl-5-tosyloxypenta-l,2-diene (3) gives 75% of 1-methyl-2-methylenecyclobutanol (4) upon hydrolysis with water and calcium carbonate at 100 °C, while acetolysis with acetic acid/sodium acetate at 80 °C, and subsequent treatment with lithium aluminum hydride, provides only 37% of the cyclobutanol.12... [Pg.227]

Write the formula for each of the following compounds (a) aluminum hydride, (b) calcium chloride, (c) lithium oxide, (d) silver nitrate, (e) iron(II) sulfite, (f) aluminum chloride, (g) ammonium carbonate, (h) zinc sulfate, (/) iron(in) oxide, (/) sodium phosphate, k) iron(ni) acetate, (/) ammonium chloride, and (m) copper(I) cyanide. [Pg.99]

Reducing agents Aluminum hydride. Bis-3-methyl-2-butylborane. n-Butyllithium-Pyridine. Calcium borohydride. Chloroiridic acid. Chromous acetate. Chromous chloride. Chromous sulfate. Copper chromite. Diborane. Diborane-Boron trifluoride. Diborane-Sodium borohydride. Diethyl phosphonate. Diimide. Diisobutylaluminum hydride. Dimethyl sulfide. Hexamethylphosphorous triamide. Iridium tetrachloride. Lead. Lithium alkyla-mines. Lithium aluminum hydride. Lithium aluminum hydride-Aluminum chloride. Lithium-Ammonia. Lithium diisobutylmethylaluminum hydride. Lithium-Diphenyl. Lithium ethylenediamine. Lithium-Hexamethylphosphoric triamide. Lithium hydride. Lithium triethoxyaluminum hydride. Lithium tri-/-butoxyaluminum hydride. Nickel-aluminum alloy. Pyridine-n-Butyllithium. Sodium amalgam. Sodium-Ammonia. Sodium borohydride. Sodium borohydride-BFs, see DDQ. Sodium dihydrobis-(2-methoxyethoxy) aluminate. Sodium hydrosulflte. Sodium telluride. Stannous chloride. Tin-HBr. Tri-n-butyltin hydride. Trimethyl phosphite, see Dinitrogen tetroxide. [Pg.516]


See other pages where Aluminum acetate calcium hydride is mentioned: [Pg.17]    [Pg.889]    [Pg.293]    [Pg.44]    [Pg.362]    [Pg.363]    [Pg.1391]    [Pg.70]    [Pg.440]    [Pg.555]    [Pg.710]    [Pg.766]    [Pg.887]    [Pg.892]    [Pg.581]    [Pg.1126]    [Pg.712]   
See also in sourсe #XX -- [ Pg.806 ]




SEARCH



Aluminum acetate

Calcium aluminum hydride

© 2024 chempedia.info