Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aluminides corrosion

Calorised Coatings The nickel- and cobalt-base superalloys of gas turbine blades, which operate at high temperatures, have been protected by coatings produced by cementation. Without such protection, the presence of sulphur and vanadium from the fuel and chloride from flying over the sea promotes conditions that remove the protective oxides from these superalloys. Pack cementation with powdered aluminium produces nickel or cobalt aluminides on the surfaces of the blade aerofoils. The need for overlay coatings containing yttrium have been necessary in recent times to deal with more aggressive hot corrosion conditions. [Pg.477]

Diffusion aluminide and silicide coatings on external and internal surfaces for high temperature corrosion protection in parts such as gas-turbine blades is estimated at 40 x 106/yr in North America and about 50 x 106 worldwide. [Pg.51]

Turbine blades of jet engines are coated with a protective layer of platinum aluminide to impart high temperature corrosion resistance. Platinum is electroplated onto the blade using P-salt or Q-salt electroplating solutions (28,29). The platinum is then diffusion-treated with aluminum vapor to form platinum aluminide. Standards for the inspection and maintenance of turbine blades have become more stringent. Blades are therefore being recoated several times during their lifetime. [Pg.173]

Incoloy, Inconel Bare—2-4 mg/cm2 in 1000 h 900°C Aluminide coatings— approximately 1 mg/cm2 in 1,000 h 900 C Intergranular corrosion observed for 800H Noble metal coatings may provide corrosion protection... [Pg.101]

There has been relatively little work published on the reaction of titanium aluminides in atmospheres other than air or oxygen. Niu et al. [96] studied the reaction of Ti-25Al-llNb in a simulated combustion atmosphere (N2+1%02+ 0.5%SO2) with and without surface deposits of Na2S04-t- NaCl at temperatures between 600 and 800°C. Exposures in the absence of surface deposits resulted in reaction rates similar to those described above for simple oxidation. The rates in the presence of the deposits at 600 and 700 °C were initially rapid and then slowed markedly after 25 to 50 hours exposure. The rate at 800°C remained rapid with the kinetics being essentially linear. The major difference in the corrosion morphology at 800 °C was the presence of copious amounts of sulfides below the oxide scales. The authors postulate a mechanism of attack involving a combination of sulfidation-oxidation and scale-fluxing. [Pg.42]

Since a general understanding is that the strength of iron aluminides is lower than that of other aluminides of interest, the relevant research is relatively few. However, an excellent resistance to oxidation and corrosion was reported for iron aluminide of p-Fe-A1 type by Okada et al. [66] together with their mechanical properties at high temperatures. [Pg.71]

Since many years the intermetallic phases based on aluminides have been an important topic for research and development, because of their high melting points, low densities and excelent corrosion resistance at high temperatures. Especially, nickel aluminides have been of great interest as coating materials for several high temperature applications. [Pg.109]

High Temperature Corrosion Behaviour of Iron Aluminides and Iron-Aluminium Chromium Alloys... [Pg.203]

Aluminides based on the intermetallic phases Ni3Al and Fe3Al are considered both as structural materials and as coatings for high temperature applications [1-6]. Their excellent corrosion resistance is due to their forming a dense, protective alumina scale. Alumina, especially ot-Al203, shows low rate constants even at temperatures above 1000°C [7]. Unlike chromia, which is formed on conventional stainless steels and nickel base alloys, alumina does not evaporate above 1000°C [8] and it is even stable in oxygen deficient atmospheres. [Pg.203]

The high temperature corrosion behaviour of different iron aluminides and iron-aluminium-chromium alloys containing 6-17 wt% aluminium, 2-10 wt% chromium and additions of mischmetal has been investigated in both air and hot process gases. [Pg.219]

Titanium aluminide alloys based on Ti3 A1 and TiAl are of interest as construction material for high temperature components particularly in aerospace industry. Good mechanical properties can be attained with alloys consisting of y-TiAl with 3 to 15 vol% a2-Ti3Al. The disadvantages are the low ductility and the inadequate oxidation resistance at service temperatures of 700-900°C [1]. A fundamental understanding of the oxidation behaviour is necessary in order to improve the corrosion resistance. The formation of the oxides on the alloy surface depends on the temperature, the oxygen partial pressure of the corrosive atmosphere, and the thermodynamic activities of Ti and A1 in the alloys. [Pg.239]

In industrial applications the environments usually contain more than one reactant. For example high temperature oxidation occurs in air by the combined attack of oxygen, nitrogen and quite frequently water vapour. However, most of the studies concerning the oxidation resistance are performed in dry oxygen or dry air. The oxidation behaviour of the intermetallic phases of theTi-Al system has recently received considerable attention. The influence of water vapour on the oxidation of titanium aluminides has not been studied intensively. There are only a few studies of the high temperature corrosion of titanium and its alloys. [Pg.289]


See other pages where Aluminides corrosion is mentioned: [Pg.50]    [Pg.233]    [Pg.761]    [Pg.907]    [Pg.911]    [Pg.961]    [Pg.410]    [Pg.414]    [Pg.50]    [Pg.1365]    [Pg.448]    [Pg.288]    [Pg.184]    [Pg.4]    [Pg.25]    [Pg.85]    [Pg.109]    [Pg.162]    [Pg.183]    [Pg.204]    [Pg.221]    [Pg.222]    [Pg.222]    [Pg.229]    [Pg.233]    [Pg.329]    [Pg.331]    [Pg.333]   
See also in sourсe #XX -- [ Pg.512 ]




SEARCH



Aluminides

© 2024 chempedia.info