Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Allylic alcohols diastereoselective asymmetric reactions

It is also possible to carry out a substrate-controlled reaction with aldehydes in an asymmetric way by starting with an acetylene bearing an optically active ester group, as shown in Eq. 9.8 [22]. The titanium—acetylene complexes derived from silyl propiolates having a camphor-derived auxiliary react with aldehydes with excellent diastereoselectivity. The reaction thus offers a convenient entry to optically active Baylis—Hillman-type allyl alcohols bearing a substituent (3 to the acrylate group, which have hitherto proved difficult to prepare by the Baylis—Hillman reaction itself. [Pg.326]

Scheme 8 summarizes the introduction of the missing carbon atoms and the diastereoselective epoxidation of the C /C double bond using a Sharpless asymmetric epoxidation (SAE) of the allylic alcohol 64. The primary alcohol 62 was converted into the aldehyde 63 which served as the starting material for a Horner-Wadsworth-Emmons (HWE) reaction to afford an E-configured tri-substituted double bond. The next steps introduced the sulfone moiety via a Mukaiyama redox condensation and a subsequent sulfide to sulfone oxidation. The sequence toward the allylic alcohol 64 was com-... [Pg.85]

Achiral ester-substituted nitrones as well as chiral nitrones can be employed in diastereoselective asymmetric versions of tandem transesterification/[3 + 21-cycloaddition reactions, as shown in Scheme 11.54 (174). High diastereoselectivity and excellent chemical yields have been observed in the reaction with a (Z)-allylic alcohol having a chiral center at the a-position in the presence of a catalytic amount of TiCl4- On the other hand, the reaction with an ( )-allylic alcohol having a chiral center at the a-position, under similar conditions, affords very low selectivities. Tamura et al. has solved this problem with a double chiral induction method. Thus, high diastereoselectivity has been attained by use of a chiral nitrone. [Pg.803]

Sato and coworkers have reported an asymmetric synthesis of Baylis-Hillman-type allylic alcohols 48, 49 via a chiral acetylenic ester titanium alkoxide complex (Scheme 9) [41]. These reactions rely on the use of the novel acetylenic ester titanium alkoxide complex 44 with a camphor-derived chiral auxiliary. Optically active, stereodefined hydroxy acrylates 46, 47 were obtained in high yields and with excellent regio- and diastereoselectivities. The chiral auxiliary was subsequently cleaved off by alcoholysis. [Pg.173]

In this chapter, recent applications of (W)-phcnylglycine amide (1) in asymmetric synthesis are presented (Figure 25.2). The first section deals with diastereoselective Strecker reactions for the preparation of a-amino acids and derivatives, whereas the second section focuses on diastereoselective allylation of imines for preparation of enantiomerically pure homoallylamines. This latter class of compounds is a well-known intermediate for the synthesis of, for example, many types of amines, amino alcohols, and P-amino acids. The final section describes reduction of imines providing enantiomerically pure amines. (S)-3,3-Dimethyl-2-butylamine and (S)-l-aminoindane will be presented as leading examples. The results described in this chapter originate from a longstanding cooperation in the field of chiral technology development between DSM Pharma Chemicals and Syncom B.V. [Pg.489]

Sharpless asymmetric epoxidation ° is an enantioselective epoxidation of an allylic alcohol with ferf-butyl hydroperoxide (f-BuOOH), titanium tetraisopropoxide [Ti(0-fPr)4] and (-b)- or (—)-diethyl tartrate [(-b)- or (—)-DET] to produce optically active epoxide from achiral allylic alcohol. The reaction is diastereoselective for a-substituted allylic alcohols. Formation of chiral epoxides is an important step in the synthesis of natural products because epoxides can be easily converted into diols and ethers. [Pg.22]

Walsh and co-workers have developed a one-pot method for the synthesis of hydroxyepoxides via an initial synthesis of an allylic alcohol followed by an asymmetric epoxidation <05JOC1262,05JA14668,05JA16416>. This reaction provides an improvement in overall yields over the typical kinetic resolution reaction. The method involves an initial asymmetric addition to the aldehyde followed by a diastereoselective epoxidation reaction. [Pg.83]

Scheme 8.8. Reactions of a chiral allylic alcohol under Sharpless epoxidation conditions (Ti(0-i-Pr)4, /-BuOOH) using the chiral tartrates given (DIPT = diisopropyltartrate). (a) The matched case, in which the preferred approach of the asymmetric catalyst and the diastereoselectivity of the substrate are the same, (b) The mismatched case, (cj An example of a Sharpless kinetic resolution (KR). Scheme 8.8. Reactions of a chiral allylic alcohol under Sharpless epoxidation conditions (Ti(0-i-Pr)4, /-BuOOH) using the chiral tartrates given (DIPT = diisopropyltartrate). (a) The matched case, in which the preferred approach of the asymmetric catalyst and the diastereoselectivity of the substrate are the same, (b) The mismatched case, (cj An example of a Sharpless kinetic resolution (KR).

See other pages where Allylic alcohols diastereoselective asymmetric reactions is mentioned: [Pg.620]    [Pg.766]    [Pg.19]    [Pg.140]    [Pg.230]    [Pg.815]    [Pg.186]    [Pg.543]    [Pg.406]    [Pg.1173]    [Pg.406]    [Pg.1173]    [Pg.283]    [Pg.107]    [Pg.631]    [Pg.268]    [Pg.179]    [Pg.283]    [Pg.654]    [Pg.883]    [Pg.940]    [Pg.280]    [Pg.412]    [Pg.452]    [Pg.375]    [Pg.642]    [Pg.186]    [Pg.338]    [Pg.338]    [Pg.250]    [Pg.327]    [Pg.34]    [Pg.257]   


SEARCH



Allyl alcohol, reaction

Allyl alcohols diastereoselectivity

Allylic alcohols asymmetric

Allylic alcohols diastereoselective

Allylic alcohols diastereoselectivity

Allylic alcohols, reactions

Allylic diastereoselective

Asymmetric allylation

Asymmetric diastereoselective

Asymmetric diastereoselectivity

Diastereoselective allylations

Diastereoselective reaction

Diastereoselective reactions Diastereoselectivity

Diastereoselectivity asymmetric reactions

Diastereoselectivity reaction

Reactions asymmetric allylation

© 2024 chempedia.info