Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Allyl prevention

The formation of an epoxyketone (1) is generally favoured when the expected product of oxidation of an allylic alcohol is a cisoid enone. This type of reaction is promoted by acid conditions and may be prevented by using the chromium trioxide-pyridine reagent which gives only the unsaturated ketone (2) corresponding to the starting alcohol. ... [Pg.226]

Alkylation reactions are subject to the same constraints that affect all Sn2 reactions (Section 11.3). Thus, the leaving group X in the alkylating agent R—X can be chloride, bromide, iodide, or tosylate. The alkyl group R should be primary or methyl, and preferably should be allylic or benzylic. Secondary halides react poorly, and tertiary halides don t react at all because a competing E2 elimination of HX occurs instead. Vinylic and aryl halides are also unreactive because backside approach is sterically prevented. [Pg.855]

The synthesis of key intermediate 6 begins with the asymmetric synthesis of the lactol subunit, intermediate 8 (see Scheme 3). Alkylation of the sodium enolate derived from carboximide 21 with allyl iodide furnishes intermediate 26 as a crystalline solid in 82 % yield and in >99 % diastereomeric purity after recrystallization. Guided by transition state allylic strain conformational control elements5d (see Scheme 4), the action of sodium bis(trimethylsilyl)amide on 21 affords chelated (Z)-enolate 25. Chelation of the type illustrated in 25 prevents rotation about the nitrogen-carbon bond and renders... [Pg.491]

It is desirable to use a gas trap in order to prevent vapors of allyl isothiocyanate from escaping into the room. The gas trap described in Org. Syn. Coll. Vol. 1, 91, is suitable. [Pg.6]

The di- and monoalkyltin compounds are considered to be effective as stabilizers because they (i) inhibit the onset of the dehydrochlorination reaction by exchanging their anionic groups, X, with the reactive, allylic chlorine atoms in the polymer (ii) react with, and thereby scavenge, the hydrogen chloride that is produced and that would otherwise induce further elimination (jii) produce the compound HX, which may also help to inhibit other undesirable side reactions and iiv) prevent breakdown of the polymer initiated by atmospheric oxidation, i.e., by acting as antioxidants. [Pg.59]

Using the above procedures, allyl a-azido alkyl ethers of type 281 were prepared by employing an unsaturated alcohol such as allyl alcohol [76] (Scheme 32). The reaction of an aldehyde with allyl alcohol and HN3 in a ratio of 1 3 9 carried out in the presence of TiCl4 as catalyst provided azido ethers 281, 283, and 285 in 70-90% yield. The ratio of reagents is critical to ensure a high yield of azido ether and to prevent formation of acetal and diazide side products [75]. Thermolysis of azido alkenes 281, 283, and 285 in benzene (the solvent of choice) for 6-20 h led to 2,5-dihydrooxazoles 282,284, and 286, respectively, in 66-90% yield. [Pg.41]

In basic aqueous media, a kinetic study of the reaction between stannate(II) ions and alkyl halide shows that mono- and disubstituted organotin compounds are formed (Eq. 6.12a).27 The monosubstituted organotin compound is obtained after a nucleophilic substitution catalyzed by a complexation between the tin(II) and the halide atom. The disubstituted compound results from an electrophilic substitution coupled with a redox reaction on a complex between the monosubstituted organotin compound and the stannate(II) ion. Stannate(IV) ions prevent the synthesis of the disubstituted compound by complexation. Similarly, when allyl bromide and tin were stirred in D2O at 60° C, allyltin(II) bromide was formed first. This was followed by further reaction with another molecule of allyl bromide to give diallyltin(IV) dibromide (Eq. 6.12b).28... [Pg.175]

The reductive coupling of of dienes containing amine groups in the backbones allows for the production of alkaloid skeletons in relatively few steps [36,46,47]. Epilupinine 80 was formed in 51% yield after oxidation by treatment of the tertiary amine 81 with PhMeSiEh in the presence of catalytic 70 [46]. Notably, none of the trans isomer was observed in the product mixture (Eq. 11). The Cp fuMcTIIF was found to catalyze cyclization of unsubstituted allyl amine 82 to provide 83. This reaction proceeded in shorter time and with increased yield relative to the same reaction with 70 (Eq. 12) [47]. Substitution of either alkene prevented cyclization, possibly due to competitive intramolecular stabilization of the metal by nitrogen preventing coordination of the substituted olefin, and resulted in hydrosilylation of the less substituted olefin. [Pg.234]

In one of their notable examples, the hydroboration polymerization of low molecular weight allyl-telechelic polyisobutylene with tripylborane (trip = 2,4,6-triisopropylphenyl) was found to yield air-stable organoboron segmented block copolymers. These boron main-chain polymers (8) (Fig. 8), unlike the general ones, were stable to air. The stability was due to the steric hindrance of the bulky tripyl groups preventing oxygen attack of the borons.28... [Pg.26]

Sn(OTf)2 can function as a catalyst for aldol reactions, allylations, and cyanations asymmetric versions of these reactions have also been reported. Diastereoselective and enantioselective aldol reactions of aldehydes with silyl enol ethers using Sn(OTf)2 and a chiral amine have been reported (Scheme SO) 338 33 5 A proposed active complex is shown in the scheme. Catalytic asymmetric aldol reactions using Sn(OTf)2, a chiral diamine, and tin(II) oxide have been developed.340 Tin(II) oxide is assumed to prevent achiral reaction pathway by weakening the Lewis acidity of Me3SiOTf, which is formed during the reaction. [Pg.434]

The isomerization barrier of 15.0-20.0 kcal mol-1 (AG ) can be considered to be large enough to allow isolation and characterization of bis(q3-<2 /),A- nms-dodecatrienediyl-Nin stereoisomers of 7b41 as reactive intermediates in the stoichiometric cyclotrimerization process. Furthermore, the trans orientation of the two allylic groups gives rise to an insurmountable barrier for reductive elimination for these cases, which prevents these species from readily leaving the thermodynamic sink via a facile reductive elimination. The isolated intermediates clearly constitute dead-end... [Pg.189]

The complete branch for formation of bis(allyl),A-cA-dodecatrienediyl-Ni11 forms is shown to be disabled, because of (i) the unfavorable coupling of two czj-butadienes along Tb -> 2b together with a slow isomerization via r 3-antiy]1 (C3) isomers of TSisoPb], which prevents a sufficient concentration of rx -anti,r l(Cl),A-cis precursors 2b, and (ii) owing to a kinetically impeded butadiene insertion into the p3-ararz-ailyl-Nin bond along 2b 7b. Consequently, the all-c-CDT production route is entirely precluded. [Pg.210]

Thus, a semilogarithmic plot of the gel time as a function of 1/T should be linear, with the slope corresponding to the apparent activation energy. We have determined the gel times for a temperature range of 25°-50° C for a thiol-ene system consisting of stoichiometrically equivalent amounts of a trifunctional thiol, trimethylolpropane tris(2-mercaptoacetate), and a trifiinctional allyl monomer, triallyl isocyanurate. In this system, we also added 0.31% by weight of hydroquinone, to prevent premature polymerization, and 1.0% by weight of a commercial photoinitiator, Esacure TZT. [Pg.161]

RhCl(PPh3)3 is an effective catalyst for the deprotection of allyl ethers in the presence of l,4-diazabicyclo[2.2.2]oc-tane (DABCO) (Equation (20)).74 75 The role of the base is to prevent hydrolysis of prop-l-enyl ether to propanal, which poisons the catalyst. [Pg.90]


See other pages where Allyl prevention is mentioned: [Pg.465]    [Pg.52]    [Pg.488]    [Pg.206]    [Pg.86]    [Pg.229]    [Pg.266]    [Pg.288]    [Pg.168]    [Pg.326]    [Pg.581]    [Pg.722]    [Pg.223]    [Pg.115]    [Pg.122]    [Pg.90]    [Pg.399]    [Pg.197]    [Pg.722]    [Pg.465]    [Pg.628]    [Pg.1127]    [Pg.202]    [Pg.270]    [Pg.323]    [Pg.39]    [Pg.53]    [Pg.86]    [Pg.143]    [Pg.145]    [Pg.150]    [Pg.17]    [Pg.123]    [Pg.196]    [Pg.188]    [Pg.220]    [Pg.333]   
See also in sourсe #XX -- [ Pg.27 , Pg.578 ]




SEARCH



© 2024 chempedia.info