Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Allyl compounds, nucleophilic

Formation of a Tr-allylpalladium complex 29 takes place by the oxidative addition of allylic compounds, typically allylic esters, to Pd(0). The rr-allylpal-ladium complex is a resonance form of ir-allylpalladium and a coordinated tt-bond. TT-Allylpalladium complex formation involves inversion of stereochemistry, and the attack of the soft carbon nucleophile on the 7r-allylpalladium complex is also inversion, resulting in overall retention of the stereochemistry. On the other hand, the attack of hard carbon nucleophiles is retention, and hence Overall inversion takes place by the reaction of the hard carbon nucleophiles. [Pg.15]

TT-Aliylpalladium chloride reacts with a soft carbon nucleophile such as mal-onate and acetoacetate in DMSO as a coordinating solvent, and facile carbon-carbon bond formation takes place[l2,265], This reaction constitutes the basis of both stoichiometric and catalytic 7r-allylpalladium chemistry. Depending on the way in which 7r-allylpalladium complexes are prepared, the reaction becomes stoichiometric or catalytic. Preparation of the 7r-allylpalladium complexes 298 by the oxidative addition of Pd(0) to various allylic compounds (esters, carbonates etc.), and their reactions with nucleophiles, are catalytic, because Pd(0) is regenerated after the reaction with the nucleophile, and reacts again with allylic compounds. These catalytic reactions are treated in Chapter 4, Section 2. On the other hand, the preparation of the 7r-allyl complexes 299 from alkenes requires Pd(II) salts. The subsequent reaction with the nucleophile forms Pd(0). The whole process consumes Pd(ll), and ends as a stoichiometric process, because the in situ reoxidation of Pd(0) is hardly attainable. These stoichiometric reactions are treated in this section. [Pg.61]

In addition, a catalytic version of Tt-allylpalladium chemistry has been devel-oped[6,7]. Formation of the Tr-allylpalladium complexes by the oxidative addition of various allylic compounds to Pd(0) and subsequent reaction of the complex with soft carbon nucleophiles are the basis of catalytic allylation. After the reaction, Pd(0) is reformed, and undergoes oxidative addition to the allylic compounds again, making the reaction catalytic.-In addition to the soft carbon nucleophiles, hard carbon nucleophiles of organometallic compounds of main group metals are allylated with 7r-allylpalladium complexes. The reaction proceeds via transmetallation. These catalytic reactions are treated in this chapter. [Pg.290]

In addition to the catalytic allylation of carbon nucleophiles, several other catalytic transformations of allylic compounds are known as illustrated. Sometimes these reactions are competitive with each other, and the chemo-selectivity depends on reactants and reaction conditions. [Pg.291]

The stereochemistry of the Pd-catalyzed allylation of nucleophiles has been studied extensively[5,l8-20]. In the first step, 7r-allylpalladium complex formation by the attack of Pd(0) on an allylic part proceeds by inversion (anti attack). Then subsequent reaction of soft carbon nucleophiles, N- and 0-nucleophiles proceeds by inversion to give 1. Thus overall retention is observed. On the other hand, the reaction of hard carbon nucleophiles of organometallic compounds proceeds via transmetallation, which affords 2 by retention, and reductive elimination affords the final product 3. Thus the overall inversion is observed in this case[21,22]. [Pg.292]

Asymmetric allylation of carbon nucleophiles has been carried out extensively using Pd catalysts coordinated by various chiral phosphine ligands and even with nitrogen ligands, and ee > 90% has been achieved in several cases. However, in most cases, a high ee has been achieved only with the l,3-diaryl-substitiitcd allylic compounds 217, and the synthetic usefulness of the reaction is limited. Therefore, only references are cited[24,133]. [Pg.319]

Dienes and allylarcncs can be prepared by the Pd-catalyzcd coupling of allylic compounds with hard carbon nucleophiles derived from alkenyl and aryl compounds of main group metals. Allylic compounds with various leaving groups can be used. Some of them are unreactive with soft nucleophiles, but... [Pg.345]

Allylic metal compounds useful for further transformations can be prepared by Pd-catalyzed reactions of allylic compounds with bimetallic reagents. By this transformation, umpolung of nucleophilic 7r-allylpalladium complexes to electrophilic allylmetal species can be accomplished. Transfer of an allyl moiety from Pd to Sn is a typical umpolung. [Pg.353]

When allylic compounds are treated with Pd(0) catalyst in the absence of any nucleophile, 1,4-elimination is a sole reaction path, as shown by 492, and conjugated dienes are formed as a mixture of E and Z isomers[329]. From terminal allylic compounds, terminal conjugated dienes are formed. The reaction has been applied to the syntheses of a pheromone, 12-acetoxy-1,3-dode-cadiene (493)[330], ambergris fragrance[331], and aklavinone[332]. Selective elimination of the acetate of the cyanohydrin 494 derived from 2-nonenal is a key reaction for the formation of the 1,3-diene unit in pellitorine (495)[333], Facile aromatization occurs by bis-elimination of the l,4-diacetoxy-2-cyclohex-ene 496[334],... [Pg.356]

An organic halide, RX (R = aryl or vinyl) adds oxidatively to Pd(0) species to form a RPdX species. An allene readily undergoes carbopalladation of the species to generate a jr-allylpalladium intermediate [3] in a highly regioselective manner. Finally, an allylic compound is produced by a nucleophile attack (Scheme 16.1). [Pg.925]

A one-pot synthesis of 3,3-disubstituted indolines was achieved by taking advantage of a sequential carbopalladation of allene, nucleophile attack, intramolecular insertion of an olefm and termination with NaBPh4 (Scheme 16.6) [10]. First, a Pd(0) species reacts with iodothiophene selectively to afford ArPdl, probably because the oxidative addition step is facilitated by coordination with the adjacent sulfur atom. Second, the ArPdl adds to allene, giving a Jt-allylpalladium complex, which is captured by a 2-iodoaniline derivative to afford an isolable allylic compound. Under more severe conditions, the oxidative addition of iodide to Pd(0) followed by the insertion of an internal olefm takes place to give an alkylpalladium complex, which is transmetallated with NaBPh4 to release the product. [Pg.927]

The reaction starts with an oxidative addition of an allylic compound to palladium(O) and a Tt-allyl-palladium complex forms. Carboxylates, allyl halides, etc. can be used. In practice one often starts with divalent palladium sources, which require in situ reduction. This reduction can take place in several ways, it may involve the alkene, the nucleophile, or the phosphine ligand added. One can start from zerovalent palladium complexes, but very stable palladium(O) complexes may also require an incubation period. Good starting materials are the 7t-allyl-palladium intermediates ... [Pg.273]

Acid-induced mcemization and isomerization of chiral allylic alcohols. Bimolecular nucleophilic displacements in allylic compounds are known to proceed via the four possible pathways shown in Scheme 19. [Pg.247]

For further details of this reaction, the reader is referred to Chapter 9. The catalytic allylation with nucleophiles via the formation of Ti-allyl metal intermediates has produced synthetically useful compounds, with the palladium-catalyzed reactions being known as Tsuji-Trost reactions [31]. The reactivity of Ti-allyl-iridium complexes has been widely studied [32] for example, in 1997, Takeuchi idenhfied a [lrCl(cod)]2 catalyst which, when combined with P(OPh)3, promoted the allylic alkylation of allylic esters 74 with sodium diethyl malonate 75 to give branched... [Pg.260]

Hetero-substituted allyl compounds obtained by electrophilic attack in the 1-position can be reduced to give the heteroalkyl compounds carrying the new substituent on the a-carbon atom ( ). In this case, the double bond was used as an activating substituent only, to achieve easier deprotonation and higher nucleophilicity. In both cases the synthetically important umpolung of reactivity was achieved20. [Pg.680]

Trost and his co-workers succeeded in the allylic alkylation of prochiral carbon-centered nucleophiles in the presence of Trost s ligand 118 and obtained the corresponding allylated compounds with an excellent enantioselec-tivity. A variety of prochiral carbon-centered nucleophiles such as / -keto esters, a-substituted ketones, and 3-aryl oxindoles are available for this asymmetric reaction (Scheme jg) Il3,ll3a-ll3g Q jjg recently, highly enantioselective allylation of acyclic ketones such as acetophenone derivatives has been reported by Hou and his co-workers, Trost and and Stoltz and Behenna - (Scheme 18-1). On the other hand, Ito and Kuwano... [Pg.96]

Several 7] -allylic ruthenium complexes can function as both a nucleophile and an electrophile, as Watanabe and his co-workers observed. Namely, these ruthenium complexes smoothly react with a variety of carbon-centered nucleophiles such as aldehydes, alcohols, and /3-diketones under mild reaction conditions and give the corresponding allylated compounds (Scheme 22). [Pg.108]

The Pd(0)-catalyzed allylic alkylation developed by Tsuji and Trost is useful for creating organic frameworks that have a variety of polar functional groups (197). The reaction is formally viewed as a combination of an allylic cation and a carbanion. A number of allylic compounds that have an electronegative leaving group can be coupled with stabilized cafbanions of pKa less than 16 under mild reaction conditions (Scheme 84). Nucleophilic attack of Pd(0) species on an allylic substrate... [Pg.105]


See other pages where Allyl compounds, nucleophilic is mentioned: [Pg.297]    [Pg.318]    [Pg.320]    [Pg.345]    [Pg.380]    [Pg.874]    [Pg.96]    [Pg.296]    [Pg.175]    [Pg.90]    [Pg.166]    [Pg.167]    [Pg.197]    [Pg.318]    [Pg.436]    [Pg.460]    [Pg.107]   


SEARCH



Allyl compounds

Allyl compounds nucleophilic addition

Allyl compounds nucleophilic displacement

Allyl compounds, nucleophilic substitution

Allylation nucleophiles

Allylic compounds

Allylic compounds, nucleophilic attack

Carbon nucleophiles allylic compounds. Tsuji-Trost reaction

Nucleophilic Addition of Allylic Groups from Boron Compounds

Nucleophilic attack on allylic compounds

Nucleophilic substitution allylic compounds

Oxygen nucleophiles allylic compounds

Sulfur nucleophiles allylic compounds

© 2024 chempedia.info