Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Allyl alcohol ethyl ether

For the addition of ethylene, EtOAc as solvent was particularly advantageous and gave 418 in 60% yield (Scheme 6.86). The monosubstituted ethylenes 1-hexene, vinylcyclohexane, allyltrimethylsilane, allyl alcohol, ethyl vinyl ether, vinyl acetate and N-vinyl-2-pyrrolidone furnished [2 + 2]-cycloadducts of the type 419 in yields of 54—100%. Mixtures of [2 + 2]-cycloadducts of the types 419 and 420 were formed with vinylcyclopropane, styrene and derivatives substituted at the phenyl group, acrylonitrile, methyl acrylate and phenyl vinyl thioether (yields of 56-76%), in which the diastereomers 419 predominated up to a ratio of 2.5 1 except in the case of the styrenes, where this ratio was 1 1. The Hammett p value for the addition of the styrenes to 417 turned out to be -0.54, suggesting that there is little charge separation in the transition state [155]. In the case of 6, the p value was determined as +0.79 (see Section 6.3.1) and indicates a slight polarization in the opposite direction. This astounding variety of substrates for 417 is contrasted by only a few monosubstituted ethylenes whose addition products with 417 could not be observed or were formed in only small amounts phenyl vinyl ether, vinyl bromide, (perfluorobutyl)-ethylene, phenyl vinyl sulfoxide and sulfone, methyl vinyl ketone and the vinylpyri-dines. [Pg.317]

When (62) was treated with ethyl vinyl ether the cycloadduct (63) is afforded. If (62) is reacted with electron donating dienophiles such as allyl alcohols, transesterification and intramolecular cycloaddition occurs in the presence of a catalytic amount of distannoxane catalyst to give cis-fused polycyclic systems such as (64) <96T733>. [Pg.182]

The reactants can be made from allylic alcohols by mercuric ion-catalyzed exchange with ethyl vinyl ether.220 The allyl vinyl ether need not be isolated and is often prepared under conditions that lead to its rearrangement. The simplest of all Claisen rearrangements, the conversion of allyl vinyl ether to 4-pentenal, typifies this process. [Pg.561]

Vinyl ethers can also be generated by thermal elimination reactions. For example, base-catalyzed conjugate addition of allyl alcohols to phenyl vinyl sulfone generates 2-(phenylsulfinyl)ethyl ethers that can undergo elimination at 200° C.223 The sigmatropic... [Pg.561]

ETHYLENE GLYCOL ETHYL MERCAPTAN DIMETHYL SULPHIDE ETHYL AMINE DIMETHYL AMIDE MONOETHANOLAMINE ETHYLENEDIAMINE ACRYLONITRILE PROPADIENE METHYL ACETYLENE ACROLEIN ACRYLIC ACID VINYL FORMATE ALLYL CHLORIDE 1 2 3-TRICHLOROPROPANE PROPIONITRILE CYCLOPROPANE PROPYLENE 1 2-DICHLOROPROPANE ACETONE ALLYL ALCOHOL PROPIONALDEHYDE PROPYLENE OXIDE VINYL METHYL ETHER PROPIONIC ACID ETHYL FORMATE METHYL ACETATE PROPYL CHLORIDE ISOPROPYL CHLORIDE PROPANE... [Pg.942]

Diethyl ether, methyl n-propyl ether, diethylamine, N-methyl-1 -propanamine, acetone, allyl alcohol, dimethylformamide, propanamide, 2-methylpropan-amide, 2,2-dimethylpropanamide, benzamide, dichloromethane, toluene, ethyl N-acetyl-glycinate, -alaninate, -methioninate, and -aspartate, ethyl acetate, tetrahydrofuran... [Pg.33]

The [3, 3] sigmatropic rearrangement of allyl vinyl ethers is known as Claisen rearrangement. Allylic alcohols can be converted to allyl vinyl ethers by mercuric acetate catalysed exchange with ethyl vinyl ether. The allyl vinyl ether need not be isolated because it undergoes rearrangement to 4-pentenal. [Pg.88]

EINECS 203-468-6, see Ethylenediamine EINECS 203-470-7, see Allyl alcohol EINECS 203-472-8, see Chloroacetaldehyde EINECS 203-481-7, see Methyl formate EINECS 203-523-4, see 2-Methylpentane EINECS 203-528-1, see 2-Pentanone EINECS 203-544-9, see 1-Nitropropane EINECS 203-545-4, see Vinyl acetate EINECS 203-548-0, see 2,4-Dimethylpentane EINECS 203-550-1, see 4-Methyl-2-pentanone EINECS 203-558-5, see Diisopropylamine EINECS 203-560-6, see Isopropyl ether EINECS 203-561-1, see Isopropyl acetate EINECS 203-564-8, see Acetic anhydride EINECS 203-571-6, see Maleic anhydride EINECS 203-576-3, see m-Xylene EINECS 203-598-3, see Bis(2-chloroisopropyl) ether EINECS 203-604-4, see 1,3,5-Trimethylbenzene EINECS 203-608-6, see 1,3,5-Trichlorobenzene EINECS 203-620-1, see Diisobutyl ketone EINECS 203-621-7, see sec-Hexyl acetate EINECS 203-623-8, see Bromobenzene EINECS 203-624-3, see Methylcyclohexane EINECS 203-625-9, see Toluene EINECS 203-628-5, see Chlorobenzene EINECS 203-630-6, see Cyclohexanol EINECS 203-632-7, see Phenol EINECS 203-686-1, see Propyl acetate EINECS 203-692-4, see Pentane EINECS 203-694-5, see 1-Pentene EINECS 203-695-0, see cis-2-Pentene EINECS 203-699-2, see Butylamine EINECS 203-713-7, see Methyl cellosolve EINECS 203-714-2, see Methylal EINECS 203-716-3, see Diethylamine EINECS 203-721-0, see Ethyl formate EINECS 203-726-8, see Tetrahydrofuran EINECS 203-729-4, see Thiophene EINECS 203-767-1, see 2-Heptanone EINECS 203-772-9, see Methyl cellosolve acetate EINECS 203-777-6, see Hexane EINECS 203-799-6, see 2-Chloroethyl vinyl ether EINECS 203-804-1, see 2-Ethoxyethanol EINECS 203-806-2, see Cyclohexane EINECS 203-807-8, see Cyclohexene EINECS 203-809-9, see Pyridine EINECS 203-815-1, see Morpholine EINECS 203-839-2, see 2-Ethoxyethyl acetate EINECS 203-870-1, see Bis(2-chloroethyl) ether EINECS 203-892-1, see Octane EINECS 203-893-7, see 1-Octene EINECS 203-905-0, see 2-Butoxyethanol EINECS 203-913-4, see Nonane EINECS 203-920-2, see Bis(2-chloroethoxy)methane EINECS 203-967-9, see Dodecane EINECS 204-066-3, see 2-Methylpropene EINECS 204-112-2, see Triphenyl phosphate EINECS 204-211-0, see Bis(2-ethylhexyl) phthalate EINECS 204-258-7, see l,3-Dichloro-5,5-dimethylhydantoin... [Pg.1482]

The sulfone moiety was reductively removed and the TBS ether was cleaved chemoselectively in the presence of a TPS ether to afford a primary alcohol (Scheme 13). The alcohol was transformed into the corresponding bromide that served as alkylating agent for the deprotonated ethyl 2-(di-ethylphosphono)propionate. Bromination and phosphonate alkylation were performed in a one-pot procedure [33]. The TPS protecting group was removed and the alcohol was then oxidized to afford the aldehyde 68 [42]. An intramolecular HWE reaction under Masamune-Roush conditions provided a macrocycle as a mixture of double bond isomers [43]. The ElZ isomers were separated after the reduction of the a, -unsaturated ester to the allylic alcohol 84. Deprotection of the tertiary alcohol and protection of the prima-... [Pg.91]

Conversion into 6-methyl-2-(4-methylphenyl)hepta- 1,5-diene. 2- 4-methyl-phenyl)prop-2-enyl vinyl ether. A mixture of the foregoing allylic alcohol (2.5 g), ethyl vinyl ether (75 ml) and freshly crystallised mercury(n) acetate (600 mg) is refluxed continuously for 12 hours on a water bath. The reaction mixture is chilled in ice and mixed with 10 per cent aqueous sodium carbonate solution (25 g) and stirred well for 30 minutes at 0 °C. The organic layer is... [Pg.797]

Bicyetic acetals.5 Cyclic allylic alcohols couple with ethyl vinyl ether when treated with Pd(OAc)2. Only a catalytic amount of Pd(II) is required if Cu(OAc)2 is present as a reoxidant. The absence of double-bond isomerization is a useful feature of this coupling. [Pg.261]

Fig. 14.47. Preparation of an allyl vinyl ether, D, from allyl alcohol and a large excess of ethyl vinyl ether. Subsequent Claisen rearrangement D C... Fig. 14.47. Preparation of an allyl vinyl ether, D, from allyl alcohol and a large excess of ethyl vinyl ether. Subsequent Claisen rearrangement D C...
The preparation involves an oxymercuration (Section 3.5.3) of the C=C double bond of the ethyl vinyl ether. The Hg(OAc) ion is the electrophile as expected, but it forms an open-chain cation A as an intermediate rather than a cyclic mercurinium ion. The open-chain cation A is more stable than the mercurinium ion because it can be stabilized by way of oxocarbe-nium ion resonance. Next, cation A reacts with the allyl alcohol, and a protonated mixed acetal B is formed. Compound B eliminates EtOH and Hg(OAc) in an El process, and the desired enol ether D results. The enol ether D is in equilibrium with the substrate alcohol and ethyl vinyl ether. The equilibrium constant is about 1. However, the use of a large excess of the ethyl vinyl ether shifts the equilibrium to the side of the enol ether D so that the latter can be isolated in high yield. [Pg.633]

In the same study, maleimides were irradiated in the presence of allyl alcohol and allyl ethyl ether, yielding the respective cyclobutanes with significant exo-preference [115]. Diastereofadal stereocontrol was achieved in the [2 + 2]-photo-cycloaddition of tetrahydrophthalimide by a chiral tether. The valinol-derived sub-... [Pg.196]


See other pages where Allyl alcohol ethyl ether is mentioned: [Pg.382]    [Pg.33]    [Pg.29]    [Pg.62]    [Pg.98]    [Pg.571]    [Pg.769]    [Pg.771]    [Pg.292]    [Pg.43]    [Pg.143]    [Pg.39]    [Pg.1458]    [Pg.1464]    [Pg.235]    [Pg.383]    [Pg.304]    [Pg.124]    [Pg.10]    [Pg.1102]    [Pg.29]    [Pg.29]    [Pg.194]    [Pg.213]    [Pg.339]    [Pg.122]    [Pg.694]    [Pg.796]    [Pg.98]    [Pg.2090]    [Pg.159]    [Pg.54]    [Pg.633]    [Pg.132]   
See also in sourсe #XX -- [ Pg.131 ]




SEARCH



Alcohol Ethylic

Alcohols ethers

Allyl ethers

Allyl-ethyl

Ether ethylic

Ethers ethyl ether

Ethyl alcohol

Ethyl ether

© 2024 chempedia.info