Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkyne Conversion

Suggest a mechanism, or preferably mechanisms, for this transformation. [Pg.68]

Japanese workers reported in 1956 (J. Pharm. Soc. Jpn., 76, 966 (1956)) that phosphorus trichloride-catalysed cyclisation of A-(3,4-dimethoxyphenylacetyl)tryptamine in boiling benzene gave the expected dihydro-p-carboline derivative. A recent reinvestigation of this reaction, however, showed that the major product, formed in 46% yield, is in fact the spirocyclic indoline derivative 1. When TFAA in benzene was used for the cyclisation, the indoline 2 was obtained in quantitative yield. [Pg.68]


Vinyl sulfides have been prepared by the catalytic addition of the S—H bond of thiols (85) to terminal alkynes (86) under solvent-free conditions using the nickel complex Ni(acac)2 (47). High alkyne conversions (up to 99%) were achieved after 30 min at 40 °C in favor of the corresponding Markovnikov products (87) (equation 23). Other metal acetylacetonate complexes were examined for this reaction, but none showed any improvement over the nickel catalyst. Mechanistic details suggest that alkyne insertion into the Ni—S bond is important to the catalytic cycle and that nanosized structural units comprised of [Ni(SAr)2] represent the active form of the catalyst. Isothiocyanates and vinyl sulfides have been produced in related Rh(acac)(H2C=CH2)2 (6) and VO(acac)2 (35) catalyzed sulfenylation reactions of aryl cyanides and aryl acetylenes, respectively. [Pg.564]

Time for maximum percentage of semihydrogenated compound. Yield at 100% alkyne conversion determined by G.C. peak area analysis. In all cases the byproduct was the fully saturated compound. [Pg.315]

On balance, palladium offers the best combination of activity and selectivity at reasonable cost, and for these reasons has become the basis of the most successful commercial alkyne hydrogenation catalysts to date. Because of their inherently high activity, these catalysts contain typically less than 0.5 % (by weight) of active metal-to preserve selectivity at high alkyne conversion. Despite the prominence of these catalysts, other active metals are used in fine chemicals applications. Of particular utility is the nickel boride formulation formed by the action of sodium borohydride on nickel(II) acetate (or chloride). Reaction in 95 % aqueous ethanol solution yields the P2-Ni(B) catalyst and selectivity in alkyne semi-hydrogenation has been demonstrated in the reaction of 3-hexyne to form cw-3-hexene in 98 % yield [15,16] ... [Pg.354]

Use of (PCy3)2Cl2Ru=CHPh (1) in Other Synthetie Transformations. As well as finding widespread use in metathesis, (1) has found applications as a catalyst for other important reactions. These include hydrosilylation of alk3Ties dehydrogenative condensation of alcohols and hydrosilylation of carbonyls intermolecular cyclotrimerization of terminal alkynes conversion of triynes to benzene derivatives Kharasch additions (Z)-selective cross-dimerization of ary-lacetylenes with silylacetylenes and hydrogenation of natural rubber. ... [Pg.688]

CoF is used for the replacement of hydrogen with fluorine in halocarbons (5) for fluorination of xylylalkanes, used in vapor-phase soldering fluxes (6) formation of dibutyl decalins (7) fluorination of alkynes (8) synthesis of unsaturated or partially fluorinated compounds (9—11) and conversion of aromatic compounds to perfluorocycHc compounds (see Fluorine compounds, organic). CoF rarely causes polymerization of hydrocarbons. CoF is also used for the conversion of metal oxides to higher valency metal fluorides, eg, in the assay of uranium ore (12). It is also used in the manufacture of nitrogen fluoride, NF, from ammonia (13). [Pg.178]

The iodination reaction can also be conducted with iodine monochloride in the presence of sodium acetate (240) or iodine in the presence of water or methanolic sodium acetate (241). Under these mild conditions functionalized alkenes can be transformed into the corresponding iodides. AppHcation of B-alkyl-9-BBN derivatives in the chlorination and dark bromination reactions allows better utilization of alkyl groups (235,242). An indirect stereoselective procedure for the conversion of alkynes into (H)-1-ha1o-1-alkenes is based on the mercuration reaction of boronic acids followed by in situ bromination or iodination of the intermediate mercuric salts (243). [Pg.315]

General Reaction Chemistry of Sulfonic Acids. Sulfonic acids may be used to produce sulfonic acid esters, which are derived from epoxides, olefins, alkynes, aHenes, and ketenes, as shown in Figure 1 (10). Sulfonic acids may be converted to sulfonamides via reaction with an amine in the presence of phosphoms oxychloride [10025-87-3] POCl (H)- Because sulfonic acids are generally not converted directiy to sulfonamides, the reaction most likely involves a sulfonyl chloride intermediate. Phosphoms pentachlotide [10026-13-8] and phosphoms pentabromide [7789-69-7] can be used to convert sulfonic acids to the corresponding sulfonyl haUdes (12,13). The conversion may also be accompHshed by continuous electrolysis of thiols or disulfides in the presence of aqueous HCl [7647-01-0] (14) or by direct sulfonation with chlorosulfuric acid. Sulfonyl fluorides are typically prepared by direct sulfonation with fluorosulfutic acid [7789-21-17, or by reaction of the sulfonic acid or sulfonate with fluorosulfutic acid. Halogenation of sulfonic acids, which avoids production of a sulfonyl haUde, can be achieved under oxidative halogenation conditions (15). [Pg.95]

The exploration of the chemistry of azirines has led to the discovery of several pyrrole syntheses. From a mechanistic viewpoint the simplest is based upon their ability to behave as a-amino ketone equivalents in reactions analogous to the Knorr pyrrole synthesis cf. Section 3.03.3.2.2), as illustrated in Schemes 91a and 91b for reactions with carbanions. Parallel reactions with enamines or a-keto phosphorus ylides can be effected with electron-deficient 2//-azirines (Scheme 91c). Conversely, electron-rich azirines react with electron deficient alkynes (Scheme 91d). [Pg.139]

The most common synthetic application of mercury-catalyzed addition to alkynes is the conversion of alkynes to ketones. This reaction is carried out under aqueous acidic conditions, where the addition intermediate undergoes protonation to regenerate Hg. ... [Pg.376]

An alternative method for the conversion of an alkyne to an alkene uses sodium or lithium metal as the reducing agent in liquid ammonia as solvent. This method is complementary to the Lindlar reduction because it produces... [Pg.268]

Alkyne alkylation is not limited to acetylene itself. Any terminal alkyne can be converted into its corresponding anion and then alkylated by treatment with an alkyl halide, yielding an internal alkyne. For example, conversion of 1-hexyne into its anion, followed by reaction with 1-bromobutane, yields 5-decyne. [Pg.273]

The synthesis of 10 features the SN2 displacement of the allylic acetate with migration of R2 from the ate complex6. Precursors 9 are prepared by the hydroboration of 3-acetoxy-l-alkynes that are available with very high enantiomeric purity via the asymmetric reduction of the corresponding l-alkyn-3-ones, and a substantial degree of asymmetric induction occurs in the conversion of 9 to 10. Best results, based on the enantioselectivity of reactions of 10 with aldehydes, are obtained when R2 is a bulky group such as isopinocampheyl (79 85 % ee)6. The yields of reactions of 10 with aldehydes are 62-76%. [Pg.314]

The reaction of 3-substituted 3-haloallenes with various cuprates, the converse reaction of propargyl derivatives, proceeds in an SN2 manner to form alkynes 69b. Very high anti stereoselectivity is achieved693. [Pg.887]

CONVERSION OF TERMINAL ALKYNES INTO CARBOXYLIC ACIDS... [Pg.40]


See other pages where Alkyne Conversion is mentioned: [Pg.499]    [Pg.184]    [Pg.185]    [Pg.185]    [Pg.185]    [Pg.67]    [Pg.20]    [Pg.93]    [Pg.316]    [Pg.548]    [Pg.122]    [Pg.274]    [Pg.499]    [Pg.184]    [Pg.185]    [Pg.185]    [Pg.185]    [Pg.67]    [Pg.20]    [Pg.93]    [Pg.316]    [Pg.548]    [Pg.122]    [Pg.274]    [Pg.25]    [Pg.486]    [Pg.384]    [Pg.181]    [Pg.101]    [Pg.149]    [Pg.69]    [Pg.384]    [Pg.167]    [Pg.157]    [Pg.158]    [Pg.415]    [Pg.616]    [Pg.241]   


SEARCH



Trans alkenes alkyne conversion

Utilization of Vinylidene to Alkyne Conversion

© 2024 chempedia.info