Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkyne Amination, intramolecular

Amines undergo aminopalladation to alkynes. The intramolecular addition of amines to alkynes yields cyclic imines. The 3-alkynylamine 273 was cyclized to the 1-pyrroline 274, and the 5-alkynylamine 275 was converted into the 2,3,4,5-tetrahydropyridine 276[137]. Cyclization of o-(l-hexynyl)aniline (277)... [Pg.502]

Cazes et al. reported the Pd-catalyzed intermolecular hydroamination of substituted allenes using aliphatic amines in the presence of triethylammonium iodide leading to allylic amines [19]. In a way similar to the Pd-catalyzed hydrocarbona-tion reactions we reported that the hydroamination of allenes [20], enynes [21], methylenecyclopropanes [22], and cyclopropene [10] proceeds most probably via oxidative addition of an N-H bond under neutral or acidic conditions to give allylic amines. The presence of benzoic acid as an additive promotes the Pd-medi-ated inter- and intramolecular hydroamination of internal alkynes [23]. Intramolecular hydroamination has attracted more attention in recent years, because of its importance in the synthesis of a variety of nitrogen-containing heterocycles found in many biologically important compounds. The metal-catalyzed intramolecular hydroamination/cyclization of aminoalkenes, aminodienes, aminoallenes, and aminoalkynes has been abundantly documented [23]. [Pg.338]

Asymmetric hydroamination has made a significant contribution toward the synthesis of chiral cyclic amines. Intramolecular asymmetric hydroamination of amino alkenes, amino alkynes, and amino allenes has been extensively studied to develop interesting strategies for the synthesis of chiral cyclic amines. [Pg.1173]

The formation of disubstituted alkynes by coupling of terminal alkynes, followed by intramolecular attack of an alcohol or amine, is used for the preparation of benzofurans and indoles. The benzo[il)]furan 356 can be prepared easily by the reaction of o-iodophenol with a terminal alkyne[262]. The 2-substituted indole 358 is prepared by the coupling of 2-ethynylaniline (357) with aryl and alkenyl halides or triflates, followed by Pd(ll)-catalyzed cycliza-tion[263]. [Pg.178]

Secondary amines can be added to certain nonactivated alkenes if palladium(II) complexes are used as catalysts The complexation lowers the electron density of the double bond, facilitating nucleophilic attack. Markovnikov orientation is observed and the addition is anti An intramolecular addition to an alkyne unit in the presence of a palladium compound, generated a tetrahydropyridine, and a related addition to an allene is known.Amines add to allenes in the presence of a catalytic amount of CuBr " or palladium compounds.Molybdenum complexes have also been used in the addition of aniline to alkenes. Reduction of nitro compounds in the presence of rhodium catalysts, in the presence of alkenes, CO and H2, leads to an amine unit adding to the alkene moiety. An intramolecular addition of an amine unit to an alkene to form a pyrrolidine was reported using a lanthanide reagent. [Pg.1001]

The cycloaddition of alkynes and alkenes to nitrile oxides has been used in the synthesis of functionalised azepine systems <96JHC259>, <96T5739>. The concomitantly formed isoxazole (dihydroisoxazole) ring is cleaved by reduction in the usual way. Other routes to 1-benzazepines include intramolecular amidoalkylation <96SC2241> and intramolecular palladium-catalysed aryl amination and aryl amidation <96T7525>. Spiro-substituted 2-benzazepines have been prepared by phenolic oxidation (Scheme 5) <96JOC5857> and the same method has been applied to the synthesis of dibenzazepines <96CC1481>. [Pg.321]

Morpholine also gives the allyhc amine in high yield. The reaction is thought to involve a known hydridopaUadium-catalyzed isomerization of alkynes to aUenes followed by reaction of the latter with the hydridopalladium complex to give 1-phenyl-substituted q -allylpalladium complexes. These complexes react with amines affording the allylic amines. Primary amines give the diallylic amines. An intramolecular version has been developed for the synthesis of 2-(2-phenyl)-pyrroUdines and -piperidines [319]. [Pg.130]

Diterpenoids related to lambertianic acid were prepared by intramolecular cyclization of either an alkene or an alkyne with a furan ring <2005RJ01145>. On heating amine 101 with allyl bromide, the intermediate ammonium ion 102 was formed which then underwent [4+2] cycloadditions in situ to give the spiroazonium bromides 103 and 104 (Scheme 13). These isomers arose from either endo- or co-transition states. The analogous reaction was also carried out with the same amine 101 and propargyl bromide. The products 105 and 106 contain an additional double bond and were isolated in 58% yield. The product ratios of 103 104 and 105 106 were not presented. [Pg.1053]

The direct, stereoselective conversion of alkynes to A-sulfonylazetidin-2-imines 16 by the initial reaction of copper(l) acetylides with sulfonyl azides, followed, in situ, by the formal [2+2] cycloaddition of a postulated A-sulfonylketenimine intermediate with a range of imines has been described <06AG(E)3157>. The synthesis of A-alkylated 2-substituted azetidin-3-ones 17 based on a tandem nucleophilic substitution followed by intramolecular Michael reaction of primary amines with alkyl 5-bromo-4-oxopent-2-enoates has been... [Pg.94]

A stereospecific intramolecular imino-ene reaction was used by Weinreb and co-workers92 to provide the enantio-selective total syntheses of (-)-montanine, (-)-coccinine, and (-)-pancracine. Refluxing the imine resulting from the condensation of 151 and 152 in mesitylene produces the amine 153 (Scheme 33) as a single stereoisomer in 63% yield after removal of the silyl group from the alkyne. The high stereoselectivity is thought to arise from a concerted ene process. [Pg.593]

In 1979, Claesson et al. observed the formation of the dihydropyrrole 125 and the pyrrole 126 when trying to purify the amine 124 by GLC [85]. They suspected that an initial cycloisomerization first leads to 125 and a subsequent dehydrogenation then delivers 126. Guided by other intramolecular nucleophilic additions to alkynes that are catalyzed by AgBF4, they discovered that this catalyst efficiently allowed the transformation of 124 to 125 (Scheme 15.38). Reissig et al. found that with enantio-merically pure substrates of that kind a cyclization without racemization is possible with Ag(I) catalysts [86],... [Pg.897]

The secondary amide can also attack intramolecularly an additional ester function to form a cyclic imide, although only in moderate yields [67], Finally, the palladium-catalysed intramolecular reaction with an alkyne, resulting in a hydro-amination of the latter, will be described later (Fig. 17) [68]. [Pg.10]

The formation of vinylcarbamates is restricted to secondary amines and also to terminal alkynes, which is in line with the formation of a metal vinylidene intermediate. It is noteworthy that even starting from secondary amines, the presence of a hydroxy group in propargylic alcohols drove the reaction towards the formation of fi-keto carbamates, resulting from initial Markovnikov addition of the carbamate anion to the triple bond followed by intramolecular transesterification [10]. The proposed general catalytic cycle which applies for the formation of vinylic carbamates is shown in Scheme 10.2. [Pg.314]

Hydroamination of Alkynes The discovery of palladium-catalyzed intramolecular addition of amines to acetylene coupled with the spectacular contribution of Hutchings opened the door for the synthesis of several nitrogen heterocycles. The first study in this field was performed by Utimoto et al., who researched gold catalyzed intramolecular 6-exo-dig hydroamination. Tautomerization of the initial enamines allowed them to obtain imines, which were thermodynamically more stable [111] (Scheme 8.20). [Pg.458]

The latter transformation requires the use of a small amount of an acid or its ammonium salt. By using [Cp2TiMe2] as the catalyst, primary anilines as well as steri-cally hindered tert-alkyl- and sec-alkylamines can be reacted.596 Hydroamination with sterically less hindered amines are very slow. This was explained by a mechanism in which equlibrium between the catalytically active [L1L2Ti=NR] imido complex and ist dimer for sterically hindered amines favors a fast reaction. Lantha-nade metallocenes catalyze the regiospecific addition of primary amines to alkenes, dienes, and alkynes.598 The rates, however, are several orders of magnitude lower than those of the corresponding intramolecular additions. [Pg.341]

Ito and co-workers have also used the Pd(OAc)2/t-alkyl isocyanide catalyst to affect the double silylation of carbon-carbon multiple bonds in an intramolecular system to yield silacarbocycles.59 Alkenes or alkynes that are tethered to a disilanyl group through a carbon chain, an ether linkage, or an amine functionality undergo intramolecular addition of the disilane moiety to the multiple bond. Activation of the disilane by the presence of electron-withdrawing groups on silicon is not necessary for the reaction to... [Pg.215]

Rhodium(II) acetate catalyzes C—H insertion, olefin addition, heteroatom-H insertion, and ylide formation of a-diazocarbonyls via a rhodium carbenoid species (144—147). Intramolecular cyclopentane formation via C—H insertion occurs with retention of stereochemistry (143). Chiral rhodium (TT) carboxamides catalyze enantioselective cyclopropanation and intramolecular C—N insertions of CC-diazoketones (148). Other reactions catalyzed by rhodium complexes include double-bond migration (140), hydrogenation of aromatic aldehydes and ketones to hydrocarbons (150), homologation of esters (151), carbonylation of formaldehyde (152) and amines (140), reductive carbonylation of dimethyl ether or methyl acetate to 1,1-diacetoxy ethane (153), decarbonylation of aldehydes (140), water gas shift reaction (69,154), C—C skeletal rearrangements (132,140), oxidation of olefins to ketones (155) and aldehydes (156), and oxidation of substituted anthracenes to anthraquinones (157). Rhodium-catalyzed hydrosilation of olefins, alkynes, carbonyls, alcohols, and imines is facile and may also be accomplished enantioselectively (140). Rhodium complexes are moderately active alkene and alkyne polymerization catalysts (140). In some cases polymer-supported versions of homogeneous rhodium catalysts have improved activity, compared to their homogenous counterparts. This is the case for the conversion of alkenes direcdy to alcohols under oxo conditions by rhodium—amine polymer catalysts... [Pg.181]


See other pages where Alkyne Amination, intramolecular is mentioned: [Pg.473]    [Pg.363]    [Pg.447]    [Pg.246]    [Pg.181]    [Pg.1000]    [Pg.1025]    [Pg.42]    [Pg.296]    [Pg.46]    [Pg.1068]    [Pg.253]    [Pg.81]    [Pg.146]    [Pg.285]    [Pg.293]    [Pg.289]    [Pg.124]    [Pg.178]    [Pg.34]    [Pg.292]    [Pg.53]    [Pg.877]    [Pg.442]   
See also in sourсe #XX -- [ Pg.3 , Pg.106 ]




SEARCH



Alkyne intramolecular

Amines alkynes

Intramolecular amination

Intramolecular aminations

© 2024 chempedia.info