Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkyl mechanistic effects

The problems associated with predicting regioselectivity in quinone Diels-Alder chemistry have been studied, and a mechanistic model based on frontier molecular orbital theory proposed (85). In certain cases of poor regioselectivity, eg, 2-methoxy-5-methyl-l,4-ben2oquinone with alkyl-substituted dienes, the use of Lewis acid catalysts is effective (86). [Pg.414]

To understand the unpredictable nature of the Pictet-Gams reaction, Hartwig and Whaley conducted the first mechanistic studies in 1949. Their work focused on substituent effects when directly attached to the ethylamine side chain. They also investigated a variety of dehydration agents in order to identify optimal reaction conditions. It was determined that formation of the isoquinoline structure was virtually impossible when alkyl or phenyl substituents were placed in the 4-position of the ethylamine side chain. [Pg.457]

The reactivity order of alkenes is that expected for attack by an electrophilic reagent. Reactivity increases with the number of alkyl substituents.163 Terminal alkenes are relatively inert. The reaction has a low AHl and relative reactivity is dominated by entropic factors.164 Steric effects govern the direction of approach of the oxygen, so the hydroperoxy group is usually introduced on the less hindered face of the double bond. A key mechanistic issue in singlet oxygen oxidations is whether it is a concerted process or involves an intermediate formulated as a pcrcpoxide. Most of the available evidence points to the perepoxide mechanism.165... [Pg.1119]

The hydrogenations become analogous to those involving HMn(CO)5 (see Section II,D), and to some catalyzed by HCo(CN)53 (see below). Use of bis(dimethylglyoximato)cobalt(II)-base complexes or cobaloximes(II) as catalysts (7, p. 193) has been more thoroughly studied (189, 190). Alkyl intermediates have been isolated with some activated olefinic substrates using the pyridine system, and electronic and steric effects on the catalytic hydrogenation rates have been reported (189). Mechanistic studies have appeared on the use of (pyridine)cobaloxime(II) with H2, and of (pyridine)chlorocobaloxime(III) and vitamin B12 with borohydride, for reduction of a,/3-unsaturated esters (190). Protonation of a carbanion... [Pg.334]

The above results clearly demonstrate influences of the steric requirements of various alkyl groups on the course of the reaction, and these effects must be reconciled in any mechanistic scheme. [Pg.471]

A case of the addition of an allylstannane to aldehydes has been reported by Tagliavini to proceed with appreciable enantioselectivity (Scheme 6.15) [40]. A notable feature of the Zr-catalyzed transformations is that they proceed more rapidly than the corresponding Ti-catalyzed processes reported by the same research team (see Scheme 6.16). Furthermore, C—C bond formation is significantly more efficient when the reactions are carried out in the presence of 4 A molecular sieves the mechanistic rationale for this effect is not known. It should be noted that alkylations involving aliphatic aldehydes are relatively low-yielding, presumably as the result of competitive hydride transfer and formation of the reduced primary alcohol. [Pg.197]

A mechanistic study of acetophenone keto-enol tautomerism has been reported, and intramolecular and external factors determining the enol-enol equilibria in the cw-enol forms of 1,3-dicarbonyl compounds have been analysed. The effects of substituents, solvents, concentration, and temperature on the tautomerization of ethyl 3-oxobutyrate and its 2-alkyl derivatives have been studied, and the keto-enol tautomerism of mono-substituted phenylpyruvic acids has been investigated. Equilibrium constants have been measured for the keto-enol tautomers of 2-, 3- and 4-phenylacetylpyridines in aqueous solution. A procedure has been developed for the acylation of phosphoryl- and thiophosphoryl-acetonitriles under phase-transfer catalysis conditions, and the keto-enol tautomerism of the resulting phosphoryl(thiophosphoryl)-substituted acylacetonitriles has been studied. The equilibrium (388) (389) has been catalysed by acid, base and by iron(III). Whereas... [Pg.599]

A third mechanistically distinct [3 -1- 2] cycloaddition between vinyl ethers and vinyl-carbenoids was discovered and reported in 2001 [26]. This reaction is remarkable because when Rh2(S-DOSP)4 is used as the catalyst, the cis-cyclopentenes 142 are formed in up to 99% enantiomeric excess. The reaction occurs between vinylcarbenoids unsubstituted or alkyl-substituted at the vinyl terminus and vinyl ethers substituted with an aryl or vinyl group. Some illustrative examples are shown in Tab. 14.12. The reaction is considered to be a concerted process, which would be consistent with the highly stereoselective nature of the reaction [26]. Contrary to the [3-1-2] cycloaddition derived by means of vinylogous carbenoid reactivity, this latest [3 -1- 2] cycloaddition is not influenced by solvent effects. Due to steric demands on the carbenoid, the [3-1-2] cycloaddi-tion only occurs with cis-vinyl ethers. [Pg.323]

Equipped with these reference trends for steric and electronic effects, one is prepared to survey more general classes of electrophilic aromatic substitution on benzocycloalkenes. Such reactions include nitration, halogenation, sulfonation, and alkylation. Each has its own mechanistic peculiarities, but their product distributions can be rationalized by consideration of the appropriate reference. [Pg.218]

These complexes are effective catalysts in epoxidation reactions with H2O2 and alkyl hydroperoxides. Several detailed mechanistic studies have been carried out in particular, it has been shown that, when the alkyl chain contains a double bond, no autoepoxidation is observed both in the solid state and in solution. Nevertheless, if f-BuOOH is added, the epoxidation of the olefinic moiety immediately takes place. Therefore, it has been suggested that these complexes are not the active species in the oxygen transfer step to the substrate, but they behave as catalysts for the primary peroxidic oxidant. On the basis of kinetic, spectroscopic and theoretical studies, the authors provided a mechanism, whose key steps are sketched in Scheme 12. In this context a major role appears to be played by the fluxionality of the particular ligands used . ... [Pg.1076]


See other pages where Alkyl mechanistic effects is mentioned: [Pg.114]    [Pg.125]    [Pg.61]    [Pg.102]    [Pg.341]    [Pg.234]    [Pg.73]    [Pg.1324]    [Pg.73]    [Pg.158]    [Pg.349]    [Pg.1]    [Pg.473]    [Pg.14]    [Pg.291]    [Pg.97]    [Pg.228]    [Pg.29]    [Pg.199]    [Pg.199]    [Pg.36]    [Pg.606]    [Pg.25]    [Pg.49]    [Pg.243]    [Pg.69]    [Pg.163]    [Pg.223]    [Pg.34]    [Pg.113]    [Pg.739]    [Pg.902]    [Pg.311]    [Pg.1]    [Pg.331]    [Pg.201]    [Pg.449]    [Pg.783]    [Pg.140]    [Pg.174]   
See also in sourсe #XX -- [ Pg.289 ]




SEARCH



Mechanistic effects

© 2024 chempedia.info