Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkyl groups mechanisms

The introduction of additional alkyl groups mostly involves the formation of a bond between a carbanion and a carbon attached to a suitable leaving group. S,.,2-reactions prevail, although radical mechanisms are also possible, especially if organometallic compounds are involved. Since many carbanions and radicals are easily oxidized by oxygen, working under inert gas is advised, until it has been shown for each specific reaction that air has no harmful effect on yields. [Pg.19]

The regioselectivity of elimination is accommodated m the E2 mechanism by noting that a partial double bond develops at the transition state Because alkyl groups... [Pg.215]

The first three equations illustrate exchange reactions in which an alkyl group is exchanged from the initiator to the THF molecule and the last equation illustrates the addition mechanism. [Pg.362]

A mechanism has been proposed to rationalize the results shown in Figure 23. The relative proportion of the A -pyrazolines obtained by the reduction of pyrazolium salts depends on steric and electronic effects. When all the substituents are alkyl groups, the hydride ion attacks the less hindered carbon atom for example when = Bu only C-5 is attacked. The smaller deuterohydride ion is less sensitive to steric effects and consequently the reaction is less selective (73BSF288). Phenyl substituents, both on the nitrogen atom and on the carbon atoms, direct the hydride attack selectively to one carbon atom and the isolated A -pyrazoline has the C—C double bond conjugated with the phenyl (328 R or R = Ph). Open-chain compounds are always formed during the reduction of pyrazolium salts, becoming predominant in the reduction of amino substituted pyrazoliums. [Pg.243]

Substitution reactions by the ionization mechanism proceed very slowly on a-halo derivatives of ketones, aldehydes, acids, esters, nitriles, and related compounds. As discussed on p. 284, such substituents destabilize a carbocation intermediate. Substitution by the direct displacement mechanism, however, proceed especially readily in these systems. Table S.IS indicates some representative relative rate accelerations. Steric effects be responsible for part of the observed acceleration, since an sfp- caibon, such as in a carbonyl group, will provide less steric resistance to tiie incoming nucleophile than an alkyl group. The major effect is believed to be electronic. The adjacent n-LUMO of the carbonyl group can interact with the electnai density that is built up at the pentacoordinate carbon. This can be described in resonance terminology as a contribution flom an enolate-like stmeture to tiie transition state. In MO terminology,.the low-lying LUMO has a... [Pg.301]

All these kinetic results can be accommodated by a general mechanism that incorporates the following fundamental components (1) complexation of the alkylating agent and the Lewis acid (2) electrophilic attack on the aromatic substrate to form the a-complex and (3) deprotonation. In many systems, there m be an ionization of the complex to yield a discrete carbocation. This step accounts for the fact that rearrangement of the alkyl group is frequently observed during Friedel-Crafts alkylation. [Pg.581]

The mechanism of the asymmetric alkylation of chiral oxazolines is believed to occur through initial metalation of the oxazoline to afford a rapidly interconverting mixture of 12 and 13 with the methoxy group forming a chelate with the lithium cation." Alkylation of the lithiooxazoline occurs on the less hindered face of the oxazoline 13 (opposite the bulky phenyl substituent) to provide 14 the alkylation may proceed via complexation of the halide to the lithium cation. The fact that decreased enantioselectivity is observed with chiral oxazoline derivatives bearing substituents smaller than the phenyl group of 3 is consistent with this hypothesis. Intermediate 13 is believed to react faster than 12 because the approach of the electrophile is impeded by the alkyl group in 12. [Pg.238]

The mechanism of organolithium addition to naphthyl oxazolines is believed to occur via initial complexation of the alkyllithium reagent to the oxazoline nitrogen atom and the methyl ether to form chelated intermediate 17. Addition of the alkyl group to the arena 7t-system affords azaenolate 18, which undergoes reaction with an electrophile on the opposite face of the alkyl group to provide the observed product 4. The chelating methyl... [Pg.239]

Oxaziranes derived from isobutyraldehyde react with ferrous salts to give only substituted formamides fEq. (23)], The chain propagating radical 30 thus suffers fission with elimination of the isopropyl group. An H-transfer would lead to substituted butyramides, which are not found. Here is seen a parallel to the fragmentation of alkoxyl radicals, where the elimination of an alkyl group is also favored over hydrogen. The formulation of the oxazirane fission by a radical mechanism is thus supported. [Pg.99]

The mechanism proposed by Emmons thus corresponds in part to the decomposition of the trialkyl-oxaziranes by ferrous salts. By radical attack on the 7V-alkyl group of the oxazirane, the radical 32 is formed which rearranges with ring opening to 33. Radical 33 propagates the chain by attack on a further molecule of oxazirane. It takes up an H-atom and is decomposed to ketone and ammonia. The aldehyde produced from the M-alkyl group is converted to tar. [Pg.102]

In general the /3-elimination proceeds by a E2-mechanism. It involves cleavage of trimethylamine and a /3-hydrogen from the original substrate alkyl group see scheme above—2 3. In some cases—depending on substrate structure and... [Pg.163]

Michael acceptors and 1,4-addiiion of alkyl group is a normal process. The reaction mechanism is not clear, but the process via addition of alkyl radicals and subsequent elimination of NO radical is one of the possible routes. Recently, several related reactions have been reported, as shown in Eq. 4.76, Eq. 4.77, and Eq. 4.78, in which alkyl radicals are involved. The reaction of trialky Igalliiim compounds with nitrostyrene gives also a similar snbsdtiidon product fEq. 4.791. ° ... [Pg.97]

Acidic ether cleavages are typical nucleophilic substitution reactions, either SN1 or Sn2 depending on the structure of the substrate. Ethers with only primary and secondary alkyl groups react by an S 2 mechanism, in which or Br attacks the protonated ether at the less hindered site. This usually results in a selective cleavage into a single alcohol and a single alkyl halide. For example, ethyl isopropyl ether yields exclusively isopropyl alcohol and iodoethane on cleavage by HI because nucleophilic attack by iodide ion occurs at the less hindered primary site rather than at the more hindered secondary site. [Pg.658]

Nitration by nitric acid in sulphuric acid has also been by Modro and Ridd52 in a kinetic study of the mechanism by which the substituent effects of positive poles are transmitted in electrophilic substitution. The rate coefficients for nitration of the compounds Pl CHi NMej (n = 0-3) given in Table 10 show that insertion of methylene groups causes a substantial decrease in deactivation by the NMej group as expected. Since analysis of this effect is complicated by the superimposed activation by the introduced alkyl group, the reactivities of the... [Pg.27]


See other pages where Alkyl groups mechanisms is mentioned: [Pg.52]    [Pg.453]    [Pg.52]    [Pg.453]    [Pg.239]    [Pg.82]    [Pg.102]    [Pg.336]    [Pg.737]    [Pg.502]    [Pg.401]    [Pg.320]    [Pg.33]    [Pg.397]    [Pg.281]    [Pg.269]    [Pg.292]    [Pg.116]    [Pg.141]    [Pg.144]    [Pg.269]    [Pg.368]    [Pg.466]    [Pg.551]    [Pg.152]    [Pg.336]    [Pg.737]    [Pg.341]    [Pg.261]    [Pg.136]    [Pg.195]    [Pg.658]    [Pg.674]    [Pg.1284]    [Pg.114]    [Pg.143]    [Pg.144]   
See also in sourсe #XX -- [ Pg.276 ]




SEARCH



Alkylation mechanism

Mechanism groups

Mechanisms alkylations

© 2024 chempedia.info