Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reductive ozonolysis alkenes

In their pioneering work. Just and co-workers have described many interesting transformations of the Diels-Alder adducts of furan to methyl nitroacrylate (77 + 77 ) and to dimethyl acetylenedicarboxylate (53). The mixture of racemic adducts 77 + 77 was hydroxylated into the exo-cis-diols 125 + 125 , separable by crystallization. Treatment of the isopropylidene acetal obtained from 125 with diazabicyclo[5.4.0]undec-5-ene (DBU) gave a high yield of alkene 126. Ozonolysis followed by a reductive work-up with dimethylsulfide, then with NaBH4, gave a mixture of epimeric triols 127. Cleavage with sodium periodate afforded 2,5-anhydro-3,4-0-isopropylidene-DL-allose (128) in 15 % yield, based on methyl 2-nitroacrylate used. TTie same allose derivative was obtained from adduct 53. ... [Pg.213]

Ozonolysis of alkenes in the presence of amine A-oxides resulted in reductive ozonolysis, i.e, the direct formation of aldehydes in high yields, avoiding the generation and isolation of ozonides or other peroxide products. Use of DMSO and tertiary amines improved the yield of aldehydes but some amount of ozonides remained. This... [Pg.112]

An older paper <1971MI873> reported that ozonolysis of alkenes in the presence of tertiary amines resulted in the formation of aldehydes. A recent reinvestigation <20060L3199> has shown that amine oxides were responsible for this reductive ozonolysis . Indeed, pretreatment of the tertiary amines with ozone, giving rise to amine oxides, accounted for this phenomenon. A preparative method emerged, by treating the alkene (e.g., 1-decene) at 0 °C with a solution of 2% 03/02 in dichloromethane (2 equiv of ozone relative to the alkene) in the presence of an excess (about threefold molar excess) of A-methylmorpholine A-oxide, pyridine A-oxide, or l,4-diazabicyclo[2.2.2]octane A-oxide (DABCO A-oxide). Yields of aldehydes (nonanal in the above example) were 80-96%, and the excess of amine oxide ensured the absence of residual ozonide (Scheme 21). [Pg.211]

Aldehydes, RCHO (Sec. 7.9) (Sec. 7.9) (Sec. 8.4) (Sec. 17.7, 19.2) (Sec. 19.2, 21.6) from disubstituted alkenes by ozonolysis from 1,2-diols by cleavage with sodium periodate from terminal alkynes by hydroboration followed by oxidation from primary alcohols by oxidation from esters by reduction with DIB AH [HA1(i-Bu)2]... [Pg.861]

The oxygen-oxygen bond of peroxides is easily reduced and many standard reducing agents are capable of cleaving the bond efficiently. Catalytic and other methods have been reviewed. Whereas the reduction of hydroperoxides leads to the formation of alcohols, considerable selectivity is possible in the products derived from disubstituted peroxides. Hydroperoxides and disubstituted peroxides are, therefore, discussed separately below, even though some of the reduction methods are identical. Reductive ozonolysis of alkenes has also been included as a separate third category. [Pg.396]

Now let s draw the forward scheme. 1,1-Dibromopentane is converted to 1-pentyne by reaction with excess sodium amide (to afford double elimination followed by deprotonation of the resulting alkyne), followed by aqueous woikup to protonate the terminal aUcynide. 1-Pentyne is converted to the aldehyde via hydroboration/oxidation. Subsequent reaction with sodium acetylide, followed by aqueous woikup, produces an alcohol. Reduction with H2 and Lindlar s catalyst converts the alkyne group to an alkene group. Ozonolysis converts the alkene to an aldehyde. Reaction with concentrated acid allows for elimination of the alcohol, producing the target compound. [Pg.405]

The final step can involve introduction of the amino group or of the carbonyl group. o-Nitrobenzyl aldehydes and ketones are useful intermediates which undergo cyclization and aromatization upon reduction. The carbonyl group can also be introduced by oxidation of alcohols or alkenes or by ozonolysis. There are also examples of preparing indoles from o-aminophcnyl-acetonitriles by partial reduction of the cyano group. [Pg.14]

Low -molecular-weight ozonides are explosive and are theretore not isolated. Instead, the ozonide is immediately treated with a reducing agent such as zinc metal in acetic acid to convert it to carbonyl compounds. The net result of the ozonolysis/reduction sequence is that the C=C bond is cleaved and oxygen becomes doubly bonded to each of the original alkene carbons. If an alkene with a letrasubstituted double bond is ozonized, two ketone fragments result if an alkene with a trisubstituted double bond is ozonized, one ketone and one aldehyde result and so on. [Pg.237]

Compound A, C H O, was found to be an optically active alcohol. Despite its apparent unsaturation, no hydrogen was absorbed on catalytic reduction over a palladium catalyst. On treatment of A with dilute sulfuric acid, dehydration occurred and an optically inactive alkene B, Q iH14, was produced as the major product. Alkene B, on ozonolysis, gave two products. One product was identified as propanal, CH3CH2CHO. Compound C, the other product, was shown to be a ketone, CgHgO. How many degrees of unsaturation does A have Write the reactions, and identify A, B, and C. [Pg.329]

Ozonolysis of alkene 446 in the presence of acetaldehyde afforded diketone 448 through the intermediacy of 447. Ring expansion through Beckmann rearrangement took place when bis-oxime 449 was mesylated and warmed in aqueous tetrahydrofuran (THF). The bis-lactam so formed gave piperidinediol 450 on reduction with lithium aluminium hydride, and this compound was transformed into ( )-sparteine by treatment with triphenylphosphine, CCI4, and triethylamine (Scheme 105) <20050BC1557>. [Pg.65]

Trioxolanes are key intermediates in the ozonolysis of alkenes (Section 4.16.8.2). This reaction is of considerable importance in synthetic chemistry where ozonide intermediates are often reduced (to aldehydes or alcohols) or oxidized (to carboxylic acids) in situ. Advantage has been taken of the stability of certain derivatives to investigate selective chemical reactions. An example of selective reduction is shown in Scheme 47 <91TL6454> with other uses of the 1,2,4-trioxolane ring as a masked aldehyde or ester referred to in Section 4.16.5.2.1. [Pg.618]

The treatment of an alkene by 5yn-hydroxylation, followed by periodic acid (HIO4) cleavage, is an alternative to the ozonolysis, followed by reductive work-up. 5yn-diols are oxidized to aldehydes and ketones by periodic acid (HIO4). This oxidation reaction divides the reactant into two pieces, thus it is called an oxidative cleavage. [Pg.267]

Alkenes can be cleaved by ozone followed by an oxidative or reductive work-up to generate carbonyl compounds. The products obtained from an ozonolysis reaction depend on the reaction conditions. If ozonolysis is followed by the reductive work-up (Z11/H2O), the products obtained are aldehydes and/or ketones. Unsubstituted carbon atoms are oxidized to formaldehyde, mono-substituted carbon atoms to aldehydes, and di-substituted carbon atoms to ketones. [Pg.267]

Substrates suitable for oxidative conversion into carbonyl compounds are alkenes, primary or secondary alcohols, and benzyl halides. Polystyrene-bound alkenes have been converted into aldehydes (with the loss of one carbon atom) by ozonolysis followed by reductive cleavage of the intermediate ozonide (Entry 1, Table 12.3). [Pg.319]

Ozonolysis allows the cleavage of alkene double bonds by reaction with ozone. Depending on the work up, different products may be isolated reductive work-up gives either alcohols or carbonyl compounds, while oxidative work-up leads to carboxylic acids or ketones. [Pg.87]

Oxidation of an Alcohol- Section 10.14 Figure 10.8 Oxymercuration-Reduction Section 11.6 Figure 11.5 Ozonolysis of an Alkene Section 11.11... [Pg.1323]

One of the most common uses of ozonolysis has been for determining the positions of double bonds in alkenes. For example, if we were uncertain of the position of the methyl group in a methylcyclopentene, the products of ozonolysis-reduction would confirm the structure of the original alkene. [Pg.368]

Ozonolysis-reduction of an unknown alkene gives an equimolar mixture of cyclohexane-carbaldehyde and butan-2-one. Determine the stmcture of the original alkene. [Pg.368]


See other pages where Reductive ozonolysis alkenes is mentioned: [Pg.251]    [Pg.398]    [Pg.696]    [Pg.684]    [Pg.20]    [Pg.618]    [Pg.303]    [Pg.920]    [Pg.66]    [Pg.66]    [Pg.243]    [Pg.602]    [Pg.865]    [Pg.220]    [Pg.28]    [Pg.247]    [Pg.277]    [Pg.171]    [Pg.876]    [Pg.879]    [Pg.893]   
See also in sourсe #XX -- [ Pg.398 ]




SEARCH



Alkenes ozonolysis

Alkenes, reductive

Ozonolysis

Reduction alkenes

© 2024 chempedia.info