Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkenes, reaction with metal complexes

Primary dialkylboranes react readily with most alkenes at ambient temperatures and dihydroborate terminal acetylenes. However, these unhindered dialkylboranes exist in equiUbtium with mono- and ttialkylboranes and cannot be prepared in a state of high purity by the reaction of two equivalents of an alkene with borane (35—38). Nevertheless, such mixtures can be used for hydroboration if the products are acceptable for further transformations or can be separated (90). When pure primary dialkylboranes are required they are best prepared by the reduction of dialkylhalogenoboranes with metal hydrides (91—93). To avoid redistribution they must be used immediately or be stabilized as amine complexes or converted into dialkylborohydtides. [Pg.310]

NMR, 3, 542 oxidation, 3, 546 phosphorescence, 3, 543 photoelectron spectra, 3, 542 photolysis, 3, 549 reactions, 3, 543-555 with alkenes, 3, 50 with alkynes, 3, 50 with IH-azepines, 3, 552 with azirines, 3, 554 with cyclobutadiene, 3, 551 with cyclopropenes, 3, 550 with dimethylbicyclopropenyl, 3, 551 with heterocyclic transition metal complexes, 7, 28 29... [Pg.852]

The enantioselective inverse electron-demand 1,3-dipolar cycloaddition reactions of nitrones with alkenes described so far were catalyzed by metal complexes that favor a monodentate coordination of the nitrone, such as boron and aluminum complexes. However, the glyoxylate-derived nitrone 36 favors a bidentate coordination to the catalyst. This nitrone is a very interesting substrate, since the products that are obtained from the reaction with alkenes are masked a-amino acids. One of the characteristics of nitrones such as 36, having an ester moiety in the a position, is the swift E/Z equilibrium at room temperature (Scheme 6.28). In the crystalline form nitrone 36 exists as the pure Z isomer, however, in solution nitrone 36 have been shown to exists as a mixture of the E and Z isomers. This equilibrium could however be shifted to the Z isomer in the presence of a Lewis acid [74]. [Pg.233]

With regard to the mechanism of these Pd°-catalyzed reactions, little is known in addition to what is shown in Scheme 10-62. In our opinion, the much higher yields with diazonium tetrafluoroborates compared with the chlorides and bromides, and the low yields and diazo tar formation in the one-pot method using arylamines and tert-butyl nitrites (Kikukawa et al., 1981 a) indicate a heterolytic mechanism for reactions under optimal conditions. The arylpalladium compound is probably a tetra-fluoroborate salt of the cation Ar-Pd+, which dissociates into Ar+ +Pd° before or after addition to the alkene. An aryldiazenido complex of Pd(PPh3)3 (10.25) was obtained together with its dediazoniation product, the corresponding arylpalladium complex 10.26, in the reaction of Scheme 10-64 by Yamashita et al. (1980). Aryldiazenido complexes with compounds of transition metals other than Pd are discussed in the context of metal complexes with diazo compounds (Zollinger, 1995, Sec. 10.1). [Pg.253]

These carbene (or alkylidene) complexes are used for various transformations. Known reactions of these complexes are (a) alkene metathesis, (b) alkene cyclopropanation, (c) carbonyl alkenation, (d) insertion into C-H, N-H and O-H bonds, (e) ylide formation and (f) dimerization. The reactivity of these complexes can be tuned by varying the metal, oxidation state or ligands. Nowadays carbene complexes with cumulated double bonds have also been synthesized and investigated [45-49] as well as carbene cluster compounds, which will not be discussed here [50]. [Pg.6]

Abstract The photoinduced reactions of metal carbene complexes, particularly Group 6 Fischer carbenes, are comprehensively presented in this chapter with a complete listing of published examples. A majority of these processes involve CO insertion to produce species that have ketene-like reactivity. Cyclo addition reactions presented include reaction with imines to form /1-lactams, with alkenes to form cyclobutanones, with aldehydes to form /1-lactones, and with azoarenes to form diazetidinones. Photoinduced benzannulation processes are included. Reactions involving nucleophilic attack to form esters, amino acids, peptides, allenes, acylated arenes, and aza-Cope rearrangement products are detailed. A number of photoinduced reactions of carbenes do not involve CO insertion. These include reactions with sulfur ylides and sulfilimines, cyclopropanation, 1,3-dipolar cycloadditions, and acyl migrations. [Pg.157]

Similar transformations have been performed with Danishefsky s diene and glyoxylate esters [85] catalyzed by bis (oxazoHne)-metal complexes to afford the hetero Diels-Alder product in 70% isolated yield and up to 72% ee. Jorgensen [86,87] reported a highly enantioselective, catalytic hetero Diels-Alder reaction of ketones and similar chiral copper(II) complexes leading to enantiomeric excesses up to 99% (Scheme 31, reaction 2). They also described [88] a highly diastereo- and enantioselective catalytic hetero Diels-Alder reaction of /I, y-imsaturated a-ketoesters with electron-rich alkenes... [Pg.118]

The hydrogenation activity of the isolated hydrides 3 and 6 towards cyclooctene or 1-octene was much lower than the Wilkinson s complex, [RhCKPPhj) ], under the same conditions [2] furthermore, isomerisation of the terminal to internal alkenes competed with the hydrogenation reaction. The reduced activity may be related to the high stability of the Rh(III) hydrides, while displacement of a coordinated NHC by alkene may lead to decomposition and Rh metal formation. [Pg.24]

Hegedus et al. have thoroughly studied the homogeneous hydroamination of olefins in the presence of transition metal complexes. However, most of these reactions are either promoted or assisted, i.e. are stoichiometric reactions of an amine with a coordinated alkene [98-101] or, if catalytic, give rise to the oxidative hydroamination products, as for example in the cyclization of o-allylanilines to 2-alkylindoles [102, 103], i.e. are relevant to Wacker-type chemistry [104]. [Pg.97]

The hydration of propylene with sulfuric acid catalyst in high-temperature water was investigated using a flow reaction system.31 The major product is isopropanol. A biopolymer-metal complex, wool-supported palladium-iron complex (wool-Pd-Fe), has been found to be a highly active catalyst for the hydration of some alkenes to the corresponding alcohols. The yield is greatly affected by the Pd/Fe molar ratio in the wool-Pd-Fe complex catalyst and the catalyst can be reused several times without remarkable change in the catalytic activity.32... [Pg.48]


See other pages where Alkenes, reaction with metal complexes is mentioned: [Pg.114]    [Pg.185]    [Pg.136]    [Pg.424]    [Pg.1198]    [Pg.104]    [Pg.1198]    [Pg.26]    [Pg.174]    [Pg.286]    [Pg.127]    [Pg.41]    [Pg.753]    [Pg.73]    [Pg.1171]    [Pg.214]    [Pg.244]    [Pg.228]    [Pg.80]    [Pg.168]    [Pg.196]    [Pg.224]    [Pg.237]    [Pg.277]    [Pg.192]    [Pg.253]    [Pg.74]    [Pg.217]    [Pg.300]    [Pg.357]    [Pg.53]    [Pg.386]    [Pg.76]   
See also in sourсe #XX -- [ Pg.305 , Pg.306 , Pg.307 ]




SEARCH



Alkene complexes reactions

Alkenes metal alkene complexes

Alkenes metallation

Complexes alkenes

Metal alkene complexes

Metal alkenes

Metal carbonyl complexes alkene reaction with

Metal complexes reactions

Metal complexes with alkenes

Metal-carbene complexes reaction with alkenes

Reaction with alkenes

With metal complexes, reactions

© 2024 chempedia.info