Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkenes, intermolecular oxidation

Since enol silyl ethers are readily accessible by a number of methods in a regioselective manner and since the trialkylsilyl moiety as a potential cationic leaving group facilitates the termination of a cyclization sequence, unsaturated 1-trialkylsilyloxy-1-alkenes represent very promising substrates for radical-cation cyclization reactions. Several methods have been reported on the synthesis of 1,4-diketones by intermolecular oxidative coupling of enol silyl ethers with Cu(II) [76, 77], Ce(IV) [78], Pb(IV) [79], Ag(I) [80] V(V) [81] or iodosoben-zene/BFa-etherate [82] as oxidants without further oxidation of the products. [Pg.82]

Palladium-catalyzed addition of oxygen nucleophiles to alkenes dates back to the Wacker process and acetoxylation of ethylene (Sects. 1 and 2). In contrast, catalytic methods for intermolecular oxidative amination of alkenes (i.e., aza-Wacker reactions) have been identified only recently. Both O2 and BQ have been used as oxidants in these reactions. [Pg.102]

Many cyclization reactions via formation of metallacycles from alkynes and alkenes are known. Formally these reactions can be considered as oxidative cyclization (coupling) involving oxidation of the central metals. Although confusing, they are also called the reductive cyclization, because alkynes and alkenes are reduced to alkenes and alkanes by the metallacycle formation. Three basic patterns for the intermolecular oxidative coupling to give the metallacyclopentane 94, metallacyclopentene 95 and metallacyclopentadiene 96 are known. (For simplicity only ethylene and acetylene are used. The reaction can be extended to substituted alkenes and alkynes too). Formation of these metallacycles is not a one-step process, and is understood by initial formation of an tj2 complex, or metallacyclopropene 99, followed by insertion of the alkyne or alkene to generate the metallacycles 94-96, 100 and 101-103 (Scheme 7.1). [Pg.238]

Gaunt and coworkers were able to affect a solvent-controlled regioselective intermolecular oxidative Heck reaction between indole and a range of alkenes (Scheme... [Pg.289]

Stahl and Sheldon have shown how oxidations can be driven by air as primary oxidant, or source of stochiometric oxidizing power. Like the catalysts in this subsection, biological oxidases are enzymes that use O2 but do not incorporate its O atoms into the substrate. For example, Pd(OAc)2-pyridine is active for alcohol oxidation, intramolecular hetero- and carbocyclization of alkenes, intermolecular O-C and C-C coupling reactions with alkenes, and oxidative C-C bond cleavage of tertiary alcohols. A pathway for alcohol oxidation is shown in Eq. 9.27. Normally a 4e process, reduction of O2 can be hard to couple with oxidation of the catalytic intermediates, processes that often proceed in 2e steps. In this case, intermediate rj -peroxo Pd(II) complexes can be formed from reaction of Pd(0) intermediates with O2, which thus acts as a 2e oxidant. [Pg.250]

Many different approaches have been described recently for the synthesis of five-membered cyclic lactams. A series of papers described the use of Rh(IlI)-catalyzed intermolecular oxidative insertion and C-N bond formation of amides and alkenes to provide Af-heterocyclic derivatives are depicted in Eqs. (5.32)-(5.37). These approaches provide efficient routes for the construction of benzolactams, pyridine-fused lactams, 3,3-disubstituted isoindolinones, and oligocyclic lactams in good yields [22a-f]. [Pg.130]

Unlike the intermolecular reaction, the intramolecular aminopalladation proceeds more easily[13,14,166], Methylindole (164) is obtained by the intramolecular exo amination of 2-allylaniline (163). If there is another olefinic bond in the same molecule, the aminopalladation product 165 undergoes intramolecular alkene insertion to give the tricyclic compound 166[178]. 2,2-Dimethyl-l,2-dihydroquinoline (168) is obtained by endo cyclization of 2-(3,3-dimethyiallyl)aniline (167). The oxidative amination proceeds smoothly... [Pg.43]

The acylpalladium complex formed from acyl halides undergoes intramolecular alkene insertion. 2,5-Hexadienoyl chloride (894) is converted into phenol in its attempted Rosenmund reduction[759]. The reaction is explained by the oxidative addition, intramolecular alkene insertion to generate 895, and / -elimination. Chloroformate will be a useful compound for the preparation of a, /3-unsaturated esters if its oxidative addition and alkene insertion are possible. An intramolecular version is known, namely homoallylic chloroformates are converted into a-methylene-7-butyrolactones in moderate yields[760]. As another example, the homoallylic chloroformamide 896 is converted into the q-methylene- -butyrolactams 897 and 898[761]. An intermolecular version of alkene insertion into acyl chlorides is known only with bridgehead acid chlorides. Adamantanecarbonyl chloride (899) reacts with acrylonitrile to give the unsaturated ketone 900[762],... [Pg.260]

The unexpected formation of cyclopenta[b]indole 3-339 and cyclohepta[b]indole derivatives has been observed by Bennasar and coworkers when a mixture of 2-in-dolylselenoester 3-333 and different alkene acceptors (e. g., 3-335) was subjected to nonreductive radical conditions (hexabutylditin, benzene, irradiation or TTMSS, AIBN) [132]. The process can be explained by considering the initial formation of acyl radical 3-334, which carries out an intermolecular radical addition onto the alkene 3-335, generating intermediate 3-336 (Scheme 3.81). Subsequent 5-erafo-trig cyclization leads to the formation of indoline radical 3-337, which finally is oxidized via an unknown mechanism (the involvement of AIBN with 3-338 as intermediate is proposed) to give the indole derivative 3-339. [Pg.273]

Intermolecular Cycloaddition at the C=C Double Bond Addition at the C=C double bond is the main type of 1,3-cycloaddition reactions of nitrile oxides. The topic was treated in detail in Reference 157. Several reviews appeared, which are devoted to problems of regio- and stereoselectivity of cycloaddition reactions of nitrile oxides with alkenes. Two of them deal with both inter- and intramolecular reactions (158, 159). Important information on regio-and stereochemistry of intermolecular 1,3-dipolar cycloaddition of nitrile oxides to alkenes was summarized in Reference 160. [Pg.21]

An interesting antibody-catalyzed intermolecular asymmetric 1,3-dipolar cycloaddition reaction between 4-acetamidobenzonitrile N-oxide and N,N-dimethylacrylamide generating the corresponding 5-acylisoxazoline was observed (216). Reversed regioselectivity of nitrile oxide cycloaddition to a terminal alkene was reported in the reaction of 4-A rt-butylbenzonitrile oxide with 6A-acrylamido-6A-deoxy-p-cyclodextrin in aqueous solution, leading to the formation of the 4-substituted isoxazoline, in contrast to the predominance of the 5-substituted regioisomer from reactions of monosubstituted alkenes (217). [Pg.27]

DFT studies of the intramolecular ene-like (or the so-called 1,3-dipolar ene) reaction between nitrile oxides and alkenes show that this reaction is a three-step process involving a stepwise carbenoid addition of nitrile oxide to form a bicyclic nitroso compound, followed by a retro-ene reaction of the nitrosocyclopropane intermediate. The competitive reactions, either the intramolecular [3 + 2] cycloaddition between nitrile oxides and alkenes or the intermolecular dimerization of nitrile oxides to form furoxans, can overwhelm the intramolecular 1,3-dipolar ene reaction if the tether joining the nitrile oxide and alkene is elongated, or if substituents such as trimethylsilyl are absent (425). [Pg.79]

Enyne metathesis is unique and interesting in synthetic organic chemistry. Since it is difficult to control intermolecular enyne metathesis, this reaction is used as intramolecular enyne metathesis. There are two types of enyne metathesis one is caused by [2+2] cycloaddition of a multiple bond and transition metal carbene complex, and the other is an oxidative cyclization reaction caused by low-valent transition metals. In these cases, the alkyli-dene part migrates from alkene to alkyne carbon. Thus, this reaction is called an alkylidene migration reaction or a skeletal reorganization reaction. Many cyclized products having a diene moiety were obtained using intramolecular enyne metathesis. Very recently, intermolecular enyne metathesis has been developed between alkyne and ethylene as novel diene synthesis. [Pg.142]

In the hydroxycyclopropanation of alkenes, esters may be more reactive than N,N-dialkylcarboxamides, as is illustrated by the exclusive formation of the disubstituted cyclopropanol 75 from the succinic acid monoester monoamide 73 (Scheme 11.21) [91]. However, the reactivities of both ester- as well as amide-carbonyl groups can be significantly influenced by the steric bulk around them [81,91]. Thus, in intermolecular competitions for reaction with the titanacydopropane intermediate derived from an alkylmagnesium halide and titanium tetraisopropoxide or methyltitanium triisoprop-oxide, between N,N-dibenzylformamide (48) and tert-butyl acetate (76) as well as between N,N-dibenzylacetamide (78) and tert-butyl acetate (76), the amide won in both cases and only the corresponding cyclopropylamines 77 and 79, respectively, were obtained (Scheme 11.21) [62,119]. [Pg.415]

Although cycloaddition reactions have yet to be observed for alkene radical cations generated by the fragmentation method, there is a very substantial literature covering this aspect of alkene radical cation chemistry when obtained by one-electron oxidation of alkenes [2-16,18-26,28-31]. Rate constants have been measured for cycloadditions of alkene and diene radical cations, generated oxidatively, in both the intra- and intermolecular modes and some examples are given in Table 4 [91,92]. [Pg.24]

The anodic oxidation of 4-methoxyphcnols in acetic acid effectively stabilises the phenoxonium ion, in an equlibrium with the acetoxylation product. Tbis allows an intermolecular [5 + 2] bx-cycloaddition processes with some alkenes [110], The cycloaddition process has been used very successfully in the synthesis of a number of natural products [III]. The rate of cycloaddition is sensitive to substituents on the alkene bond and in imfavourable cases other reactions of the phenoxonium ion predominate. [Pg.207]

Oxidative amination of carbamates, sulfamates, and sulfonamides has broad utility for the preparation of value-added heterocyclic structures. Both dimeric rhodium complexes and ruthenium porphyrins are effective catalysts for saturated C-H bond functionalization, affording products in high yields and with excellent chemo-, regio-, and diastereocontrol. Initial efforts to develop these methods into practical asymmetric processes give promise that such achievements will someday be realized. Alkene aziridina-tion using sulfamates and sulfonamides has witnessed dramatic improvement with the advent of protocols that obviate use of capricious iminoiodinanes. Complexes of rhodium, ruthenium, and copper all enjoy application in this context and will continue to evolve as both achiral and chiral catalysts for aziridine synthesis. The invention of new methods for the selective and efficient intermolecular amination of saturated C-H bonds still stands, however, as one of the great challenges. [Pg.406]

Elsewhere, Heaney et al. (313-315) found that alkenyloximes (e.g., 285), may react in a number of ways including formation of cyclic nitrones by the 1,3-APT reaction (Scheme 1.60). The benzodiazepinone nitrones (286) formed by the intramolecular 1,3-APT will undergo an intermolecular dipolar cycloaddition reaction with an external dipolarophile to afford five,seven,six-membered tricyclic adducts (287). Alternatively, the oximes may equilibrate to the corresponding N—H nitrones (288) and undergo intramolecular cycloaddition with the alkenyl function to afford five,six,six-membered tricyclic isoxazolidine adducts (289, R = H see also Section 1.11.2). In the presence of an electron-deficient alkene such as methyl vinyl ketone, the nitrogen of oxime 285 may be alkylated via the acyclic version of the 1,3-APT reaction and thus afford the N-alkylated nitrone 290 and the corresponding adduct 291. In more recent work, they prepared the related pyrimidodiazepine N-oxides by oxime-alkene cyclization for subsequent cycloaddition reactions (316). Related nitrones have been prepared by a number of workers by the more familiar route of condensation with alkylhydroxylamines (Scheme 1.67, Section 1.11.3). [Pg.51]

Many aspects of intramolecular nitrile oxide cycloadditions are similar to those of the intermolecular ones. Due to the proximity of the reacting groups, however, there are also several items that differ significantly. While HOMO-LUMO interactions and steric effects direct the intermolecular nitrile oxide cycloaddition to 1-alkenes to produce 5-substituted isoxazolines, the intramolecular cases often show a different behavior. With most of them, regioselectivity is determined by geometric constraints and cycloadditions occur in the exo mode to furnish the annulated bicycle (Scheme 6.42). [Pg.407]

Palladium(0)-catalyzed cross-coupling of aryl halides and alkenes (i.e., the Heck reaction) is widely used in organic chemistry. Oxidative Heck reactions can be achieved by forming the Pd -aryl intermediate via direct palladation of an arene C - H bond. Intramolecular reactions of this type were described in Sect. 4.1.2, but considerable effort has also been directed toward the development of intermolecular reactions. Early examples by Fu-jiwara and others used organic peroxides and related oxidants to promote catalytic turnover [182-184]. This section will highlight several recent examples that use BQ or dioxygen as the stoichiometric oxidant. [Pg.103]

Blechert et al. succeeded in intermolecular CM of terminal alkyne and terminal alkene. A reaction carried out in CH2CI2 at RT in the presence of 5-7mol% Ic gives a mixture of ( )- and (Z)-isomers (Table 2). Because of the nonselective stereochemical course, a silyl-protected ally alcohol is employed and the resulting metathesis product is deprotected and oxidized to afford the desired diene having an -configuration (Equation (13)). [Pg.282]

The main steps in the currently accepted catalytic cycle of the Heck reaction are oxidative addition, carbopalla-dation (G=G insertion), and / -hydride elimination. It is well established that both, the insertion as well as the elimination step, are m-stereospecific. Only in some cases has formal /r/ / i--elimination been observed. For example, exposure of the l,3-dibromo-4-(dihydronaphthyloxy)benzene derivative 16 and an alkene 1-R to a palladium source in the presence of a base led to a sequential intra-intermolecular twofold Heck reaction furnishing the alkenylated tetracyclic products 17 in good to excellent yields (Scheme 9). " In the rate-determining step, the base removes a proton in an antiperiplanar orientation from the benzylic palladium intermediate. The best amine base was found to be l,4-diazabicyclo[2.2.2]octane, which apparently has an optimal shape for this proton abstraction. [Pg.314]


See other pages where Alkenes, intermolecular oxidation is mentioned: [Pg.95]    [Pg.95]    [Pg.75]    [Pg.102]    [Pg.163]    [Pg.40]    [Pg.193]    [Pg.286]    [Pg.46]    [Pg.163]    [Pg.86]    [Pg.329]    [Pg.18]    [Pg.132]    [Pg.126]    [Pg.612]    [Pg.306]    [Pg.171]    [Pg.398]    [Pg.399]    [Pg.400]    [Pg.1137]    [Pg.364]    [Pg.30]    [Pg.351]   
See also in sourсe #XX -- [ Pg.40 ]




SEARCH



Alkenes intermolecular

Alkenes oxidant

Alkenes, oxidative

© 2024 chempedia.info