Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkenes intermolecular nitrone cycloaddition reactions

Elsewhere, Heaney et al. (313-315) found that alkenyloximes (e.g., 285), may react in a number of ways including formation of cyclic nitrones by the 1,3-APT reaction (Scheme 1.60). The benzodiazepinone nitrones (286) formed by the intramolecular 1,3-APT will undergo an intermolecular dipolar cycloaddition reaction with an external dipolarophile to afford five,seven,six-membered tricyclic adducts (287). Alternatively, the oximes may equilibrate to the corresponding N—H nitrones (288) and undergo intramolecular cycloaddition with the alkenyl function to afford five,six,six-membered tricyclic isoxazolidine adducts (289, R = H see also Section 1.11.2). In the presence of an electron-deficient alkene such as methyl vinyl ketone, the nitrogen of oxime 285 may be alkylated via the acyclic version of the 1,3-APT reaction and thus afford the N-alkylated nitrone 290 and the corresponding adduct 291. In more recent work, they prepared the related pyrimidodiazepine N-oxides by oxime-alkene cyclization for subsequent cycloaddition reactions (316). Related nitrones have been prepared by a number of workers by the more familiar route of condensation with alkylhydroxylamines (Scheme 1.67, Section 1.11.3). [Pg.51]

The in situ formation of nitrones from oximes by 1,3-APT or 1,2-prototropy is clearly a powerful synthetic strategy but conventional nitrone generation, in particular hydroxylamine-carbonyl condensation, has been applied to numerous syntheses, in intra- and intermolecular mode (258). Accordingly, the ring systems similar to those synthesized using 1,3-APT/intramolecular nitrone-alkene cycloaddition (INAC) methodology by Heaney (313-315) (see Section 1.11.2) or Padwa and Norman (340) have been made using conventionally prepared nitrones (Scheme 1.67). As with the previous examples, once formed, the nitrones are suitably placed for a spontaneous intramolecular cycloaddition reaction with the... [Pg.55]

The use of mediators to improve reactivity or selectivity in nitrone cycloaddition chemistry begins with the nitrone generation step. As is well known, the N-alkyla-tion of oximes provides one of the most direct and convenient synthetic routes to N-alkylated nitrones from readily available aldehydes and ketones. Electrophilic mediators have been employed to activate alkenes for N-alkylation, both in intramolecular and intermolecular reactions. They include activation of the internal alkene function by the action of (a) strong nonmetallic electrophiles such as phenyl-selenenyl sulfate (159), and (b) metallic catalysts such as Ag(I) (160) and Pd(II) ions... [Pg.795]

Alcaide and coworkers have reported in 2002 the synthesis of various types of racemic and homochiral 1,3,4-trisubstituted- or fused polycyclic (3-lactams (III and IV, respectively, Fig. 9) via intermolecular 1,3-dipolar cycloaddition reaction of 2-azetidinone-tethered nitrones with a variety of alkenes or alkynes [264]. [Pg.164]

Dipolar cycloaddition reactions occurreadily even with non-activated dipo-larophiles, such as isolated alkenes. This contrasts with the Diels-Alder reaction, particularly for intermolecular reactions, in which an activated alkene as the dienophile is required. Like the Diels-Alder reaction, [3+2] cycloaddition reactions of 1,3-dipoles are reversible, although in most cases it is the kinetic product that is isolated. For the intermolecular cycloaddition of nitrile oxides or nitrones, two of the most frequently used 1,3-dipoles, to monosubstituted or 1,1-disubstituted alkenes (except highly electron-deficient alkenes), the oxygen atom of the 1,3-dipole becomes attached to the more highly substituted carbon atom of the alkene double bond. Hence the 5-substituted isoxazolidine 206 is generated from the cycloaddition of the cyclic nitrone 205 with propene (3.136). Reductive... [Pg.225]

Once we understand flie regio- and stereochemistry of the [3+2] cycloaddition reactions involving nitronates, the formulation of the tandem process proposed in Part 2 is not difficult. The starting compounds are a nitroalkene 7 (tethered to an a,P-unsaturated ester) and 2,3-dimethyl-2-butene 8, a simple unactivated alkene. The fragments of flie starting materials can be easily recognized in the structure of the reaction product 9, as indicated in Scheme 22.7. The nitroalkene skeleton has been drawn in red and the 2,3-dimethyl-2-butene in blue. Discoimection of bonds a and b in 9 leads back to nitronate intermediate 13. Disconnection of c and d bonds in 13 leads back to nitroalkene 7 and 2,3-dimethyl-2-butene 8 (Scheme 22.7). The overall reaction could be interpreted as a tandem intermolecular [4+2]/ intramolecular [3+2] cycloaddition. Next we will formulate the process step by step. [Pg.148]

A review of recent developments in 1,3-dipolar cycloaddition of nitrones with sila-, thia-, phospha-, and halo-substituted alkenes has been reported. A DFT study of solvent effects on the intermolecular 3-l-2-cycloaddition reaction of norbornadiene with 3,4-dihydroisoquinoline A(-oxide at 398.15 K indicated that the reaction proceeds via a synchronous concerted mechanism. Chiral imidazolidinone salts, in the absence of water, promote the 1,3-dipolar cycloaddition reaction of alanine-derived ketonitrones... [Pg.444]

The intermolecular alkylation of metallo nitronates with various alkyl halides is limited. The addition of methyl iodide to the silver salt of an aryl nitro-methane provides the corresponding methyl nitronate in moderate yield (Eq. 2.13) (150), which has also been extended to the silver salt of trinitromethane (Scheme 2.16) (151-153). However, in the case of primary halides, both O- and C-alkylation are observed. For secondary and tertiary halides, only O-alkylation is observed, but in low yields. Unfortunately, under the reaction conditions, the starting alkyl halide can undergo dehydrohalogenation to provide the corresponding alkene, which then undergoes [3+2] cycloaddition with the alkyl nitronate. [Pg.131]


See other pages where Alkenes intermolecular nitrone cycloaddition reactions is mentioned: [Pg.364]    [Pg.290]    [Pg.252]    [Pg.845]    [Pg.691]    [Pg.15]   
See also in sourсe #XX -- [ Pg.60 , Pg.61 , Pg.62 , Pg.63 , Pg.64 , Pg.65 , Pg.66 , Pg.67 ]

See also in sourсe #XX -- [ Pg.60 , Pg.61 , Pg.62 , Pg.63 , Pg.64 , Pg.65 , Pg.66 , Pg.67 ]




SEARCH



Alkenes 2 + 3]-cycloaddition reactions

Alkenes 2+2]cycloaddition

Alkenes intermolecular

Alkenes nitrones

Alkenes, cycloadditions

Cycloaddition reactions intermolecular

Nitronates cycloadditions

Nitronates intermolecular

Nitronates intermolecular cycloadditions

Nitrone reactions

Nitrone-alkene cycloaddition

Nitrones cycloaddition

Nitrones intermolecular reactions

Nitrones nitrone-alkene

Nitrones, cycloaddition reactions

Nitrones, cycloadditions

Nitrones, reactions

© 2024 chempedia.info