Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkenes, cycloaddition with

Nonetheless, there are a small number of systems that do mediate such [2 -i- 2 -t- 2] cycloadditions. With allenes as the alkene , cycloaddition with both acetylene and terminal alkynes proceeds regio-selectively to give 3,5-dimethylenecyclohexenes using Ni catalysts, and mostly 3,6-dimethylenecyclo-hexenes using Ni° catalyst precursors (equation 19). Norbomadiene undergoes so-called homo-Diels-Alder cycloaddition with both alkenes and a ynes in the presence of nickel catalysts. Further elaboration of this chemistry with alkynes but not alkenes has been described using a Co/Al catalyst system (equation 20). Attempts to produce cyclohexenes via all-intramolecular [2 + 2 + 2] cycloaddition of l,13-dien-7-ynes or 1,1 l-dien-6-ynes have been unsuccessful. ... [Pg.1141]

A newer method for the preparation of nitronic esters, namely utilizing the (9-trimethyl-silyl ester, has been reported and these are prepared by the reaction of alkylnitro compounds and (V,(V-bis(trimethylsilyl)acetamide. These nitronic esters also undergo cycloaddition with alkenes to produce isoxazolidines (equation 54) (74MIP41601, 74DOK109, 78ACS(B)ll8). [Pg.110]

On the other hand, its cycloadditions with 1,2-disubstituted alkenes under similar conditions produce stereospecifically a mixture of regioisomeric products [35] (equation 34) In contrast, its reaction with theunsymmetrical alkyne 1 -phenyl-propyne leads to a single product [35] (equation 35)... [Pg.809]

Recently, Burger devised an improved method of carrying out mild, regiospecific cyclizations that involve an intermediate that acts as a synthon for a nitrile ylide of HCN [47 (equation 48). With this methodology, cycloadditions with activated alkenes, alkynes, and azo compounds were earned out [47] (equation 49). All such reported reactions were regiospecific and had the same orientational preference... [Pg.813]

Nitrone hydrate is converted into nitrone by boiling in benzene with azeotropic removal of water [48] (equation 50). This in situ formation of nitrone is carried out in the presence of various alkenes and alkynes, which undergo cycloaddition with the nitrone [48, 49] (equations 51 and 52). [Pg.814]

Early work established that S4N4 forms di-adducts with alkenes such as norbornene or norbomadiene. Subsequently, structural and spectroscopic studies established that cycloaddition occurs in a 1,3-S,S"-fashion. The regiochemistry of addition can be rationalized in frontier orbital terms the interaction of the alkene HOMO with the low-lying LUMO of S4N4 exerts kinetic control. Consistently, only electron-rich alkenes add to S4N4. [Pg.69]

A chiral titanium(IV) complex has also been used by Wada et al. for the intermole-cular cycloaddition of ( )-2-oxo-l-phenylsulfonyl-3-alkenes 45 with enol ethers 46 using the TADDOL-TiX2 (X=C1, Br) complexes 48 as catalysts in an enantioselective reaction giving the dihydropyrans 47 as shown in Scheme 4.32 [47]. The reaction depends on the anion of the catalyst and the best yield and enantioselectivity were found for the TADDOL-TiBr2 up to 97% ee of the dihydropyrans 47 was obtained. [Pg.178]

Scheeren et al. reported the first enantioselective metal-catalyzed 1,3-dipolar cycloaddition reaction of nitrones with alkenes in 1994 [26]. Their approach involved C,N-diphenylnitrone la and ketene acetals 2, in the presence of the amino acid-derived oxazaborolidinones 3 as the catalyst (Scheme 6.8). This type of boron catalyst has been used successfully for asymmetric Diels-Alder reactions [27, 28]. In this reaction the nitrone is activated, according to the inverse electron-demand, for a 1,3-dipolar cycloaddition with the electron-rich alkene. The reaction is thus controlled by the LUMO inone-HOMOaikene interaction. They found that coordination of the nitrone to the boron Lewis acid strongly accelerated the 1,3-dipolar cycloaddition reaction with ketene acetals. The reactions of la with 2a,b, catalyzed by 20 mol% of oxazaborolidinones such as 3a,b were carried out at -78 °C. In some reactions fair enantioselectivities were induced by the catalysts, thus, 4a was obtained with an optical purity of 74% ee, however, in a low yield. The reaction involving 2b gave the C-3, C-4-cis isomer 4b as the only diastereomer of the product with 62% ee. [Pg.218]

Inverse electron-demand Diels-Alder reaction of (E)-2-oxo-l-phenylsulfo-nyl-3-alkenes 81 with enolethers, catalyzed by a chiral titanium-based catalyst, afforded substituted dihydro pyranes (Equation 3.27) in excellent yields and with moderate to high levels of enantioselection [81]. The enantioselectivity is dependent on the bulkiness of the Ri group of the dienophile, and the best result was obtained when Ri was an isopropyl group. Better reaction yields and enantioselectivity [82, 83] were attained in the synthesis of substituted chiral pyranes by cycloaddition of heterodienes 82 with cyclic and acyclic enolethers, catalyzed by C2-symmetric chiral Cu(II) complexes 83 (Scheme 3.16). [Pg.124]

Benzene rings can undergo photochemical cycloaddition with alkenes. The major product is usually the 1,3 addition product, 116 (in which a three-membered ring has also been formed), though some of the 1,2 product (117)... [Pg.1093]

Cycloadditions with the Si(lOO) surface were theoretically [133] concluded to be reactions in the pseudoexcitation band. The conclusion is applicable to thermal [2+2] cycloaddition reactions of unsaturated bonds between heavy atoms. In fact, Sekiguchi, Nagase et al. confirmed that a Si triple bond underwent the stereospecific reactions with alkenes [137] along the path typical of [2+2] cycloaddition in the pseudoexcitation band. The stereospecific [2+2] cycloadditions of were designed by Inagaki et al. (Scheme 28) [138]. [Pg.49]

Syntheses of fluoro-substituted pyrazoles continue to be of interest. Both 3- and 5-fluoropyrazoles (44 and 45, respectively) can be prepared from 43 <96JOC2763>. Treatment of 43 with hydrazine followed by N-alkylation provides 44, whereas reactions with monosubstituted hydrazines afford 45. The 4-(trifluoromcthyl)pyrazoles 47 are obtained from J-trifluoromethyl vinamidinium salt 46 <96TL1829>. The 5-trifluoromethyl-3-carboethoxypyrazoles 49 are obtained from the 1,3-dipolar cycloadditions of trifluoromethyl alkenes 48 with ethyl diazoacetate <96T4383>. [Pg.151]

One-pot tandem sequences involving 1,4-addition and ISOC as the key steps have been developed for the construction of N and 0 heterocycles as well as of carbocycles [44]. In this sequence, the nitronate arising from 1,4-addition to an a, -unsaturated nitro alkene is trapped kinetically using trimethyl silyl chloride (TMSCl). The resulting silyl nitronate underwent a facile intramolecular 1,3-dipolar cycloaddition with the unsaturated tether (e.g.. Schemes 20-22). [Pg.23]

Scheme 6.8 gives some examples of ketene-alkene cycloadditions. In Entry 1, dimethylketene was generated by pyrolysis of the dimer, 2,2,4,4-tetramethylcyclobutane-l,3-dione and passed into a solution of the alkene maintained at 70° C. Entries 2 and 3 involve generation of chloromethylketene by dehydrohalo-genation of a-chloropropanoyl chloride. Entry 4 involves formation of dichloroketene. Entry 5 is an intramolecular addition, with the ketene being generated from a 2-pyridyl ester. Entries 6, 7, and 8 are other examples of intramolecular ketene additions. [Pg.542]

Photocycloaddition of Alkenes and Dienes. Photochemical cycloadditions provide a method that is often complementary to thermal cycloadditions with regard to the types of compounds that can be prepared. The theoretical basis for this complementary relationship between thermal and photochemical modes of reaction lies in orbital symmetry relationships, as discussed in Chapter 10 of Part A. The reaction types permitted by photochemical excitation that are particularly useful for synthesis are [2 + 2] additions between two carbon-carbon double bonds and [2+2] additions of alkenes and carbonyl groups to form oxetanes. Photochemical cycloadditions are often not concerted processes because in many cases the reactive excited state is a triplet. The initial adduct is a triplet 1,4-diradical that must undergo spin inversion before product formation is complete. Stereospecificity is lost if the intermediate 1,4-diradical undergoes bond rotation faster than ring closure. [Pg.544]

Intramolecular enone-alkene cycloadditions are also possible. In the case of (3-(5-pentenyl) substituents, there is a general preference for exo-type cyclization to form a five-membered ring.195 This is consistent with the general pattern for radical cyclizations and implies initial bonding at the (3-carbon of the enone. [Pg.547]

The simplest nitroalkene, nitroethene, undergoes Lewis acid-promoted [4+2] cycloaddition with chiral vinyl ethers to give cyclic nitronates with high diastereoselectivity. The resulting cyclic nitronates react with deficient alkenes to effect a face-selective [3+2] cycloaddition. A remote acetal center controls the stereochemistry of [3+2] cycloaddition. This strategy is applied to synthesis of the pyrrolizidine alkaloids (+)-macronecine and (+)-petasinecine (Scheme 8.33).165... [Pg.281]

Reaction of the aldehyde-tethered furanone 244 with pipecolinic acid results in the formation of the oxazolopyr-idine derivative 245, which undergoes spontaneous decarboxylation to give the ylide 246. This in turn undergoes an intramolecular cycloaddition with the tethered exomethylene group to give 247, or with the endocyclic alkene to give the furoindolizine 248 <1997T10633> (Scheme 66). [Pg.814]

Thermolysis of the isothiazolopyridine dioxide 223 results in loss of S02 to give an azadiene which spontaneously undergoes an intramolecular [4+2] cycloaddition with the tethered terminal alkene to give the tricycle 224 (Equation 58) <1997TL4667, 2002EJ0947>. [Pg.898]

Diels-Alder reaction of the 1,3,4-oxadiazole with the pendant olefin and loss of N2, the C2-C3 7t bond participates in a subsequent 1,3-dipolar cycloaddition with the carbonyl ylide to generate complex polycycles such as 45 as single diastereomers with up to six new stereocenters. That the cascade reaction is initiated by a Diels-Alder reaction with the alkene rather than with the indole is supported by the lack of reaction even under forcing conditions with substrate 46, in which a Diels-Alder reaction with the indole C2-C3 n bond would be required [26a]. [Pg.76]

The highly strained nature of methylene- and alkylidenecyclopropanes has been evidenced by spectroscopic measurements and X-ray analysis. The presence of the exocyclic double bond imposes a lengthening of the C(2)-C(3) bond as a result of an increase of the C(2)-C(l)-C(3) angle (compared to cyclopropane). This structural feature is reflected in a typical reactivity of these compounds which is a thermal or transition metal catalysed [3 + 2] cycloaddition with alkenes. This chemistry, usually referred to as TMM chemistry , has been the object of many studies and thoroughly reviewed by Binger and Buch [2] and Trost [8]. [Pg.11]

Very recently, [2 + 2] cycloadditions with alkenes activated by electron-with drawing groups have teen performed on the double bond of methylenecyc-lopropanes exo-substituted with two electron-donating groups, e.g., dimethyleneketene acetals 546 (Scheme 75, Table 44) [145]. [Pg.85]

Sulfonyl imides (78) are, like sulfenes, prepared by dehydrohalogenation of the corresponding sulfonyl chlorides (79) (usually called sulfamoyl chlorides). Like sulfenes, they take part in [2 + 2] and [4 + 2] cycloaddition reactions with electron-rich alkenes or with 1,3-dienes, yielding 1,2-thia-zetidine 1,1-dioxides (80)104 or dihydro-1,2-thiazines (81),105 respectively. [Pg.72]


See other pages where Alkenes, cycloaddition with is mentioned: [Pg.263]    [Pg.264]    [Pg.91]    [Pg.228]    [Pg.50]    [Pg.63]    [Pg.132]    [Pg.196]    [Pg.8]    [Pg.532]    [Pg.315]    [Pg.13]    [Pg.128]    [Pg.46]    [Pg.15]    [Pg.19]    [Pg.37]    [Pg.67]    [Pg.87]    [Pg.10]    [Pg.100]    [Pg.269]    [Pg.82]   


SEARCH



Alkenes 2+2]cycloaddition

Alkenes, cycloadditions

Cycloaddition with

© 2024 chempedia.info