Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkenes catalytic polymerization

Even more important is the stereoregular catalytic polymerization of ethene and other alkenes to give high-density polyethene ( polythene ) and other plastics. A typical Ziegler-Natta catalyst can be made by mixing TiCU and Al2Eti in heptane partial reduction to Ti " and alkyl transfer occur, and a brown suspension forms which rapidly absorbs and polymerizes ethene even at room temperature and atmospheric pressure. Typical industrial conditions are 50- 150°C and 10 atm. Polyethene... [Pg.260]

Depending on the reaction conditions, alkenes may undergo either of two types of catalytic polymerization. The products of the first type, which may be termed true polymerization, consist of alkenes having molecular weights which are integral multiples of the monomer alkene. The second type, conjunct polymerization, yields a complex mixture of alkanes, alkenes, alkadienes, cycloalkanes, cycloalkenes, cycloalkadienes, and, in some cases, aromatic hydrocarbons the products do not necessarily have a number of carbon atoms corresponding to an integral multiple of the monomer. [Pg.22]

The mechanism of catalytic polymerization of alkenes to motor fuel recently has been abiv discussed by Schmerling and Ipatieff in one chapter of a current book on catalysis (5). [Pg.96]

Yawalkar et al. (2001) has developed a model for a three-phase reactor based on the use of a dense polymeric composite membrane containing discrete cubic zeolite particles (Fig. 4.5) for the epoxidation reaction of alkene. Catalytic particles of the same size are assumed vdth a cubic shape and uniformly dispersed across the polymer membrane cross-section. Effects of various parameters, such as peroxide and alkene concentration in liquid phase, sorption coefficient of the membrane for peroxide and alkene, membrane-catalyst distribution coefficient for peroxide and alkene and catalyst loading, have been studied. The results have been discussed in terms of a peroxide effidency defined as the ratio of flux of peroxide through the membrane utilized for alkene oxidation to the total flux of organic peroxide through the membrane. The paper aimed to show that, by using an organophilic dense membrane and the catalysts confined in the polymeric matrix, the oxidant concentration (in that reaction peroxides) can be controlled on the active site with an improvement of the peroxide efficiency and selectivity to desired products. [Pg.169]

Alkene Intermediates in Catalytic Polymerization and Other Reactions... [Pg.127]

Since the Nobel Prize for chemistry in 2005 was awarded to Chauvin, Schrock, and Gmbbs, ROMP has developed to a widely used tool in catalytic polymerization. Even though, to the best of our knowledge, no homogenous hyperbranched polymer has been synthesized by ROMP of cyclic alkens yet, Lavrich et presented an elegant way to obtain hyper-... [Pg.586]

Before coordination polymerization was discovered by Ziegler and applied to propene by Natta, there was no polypropylene industry. Now, more than 10 ° pounds of it aie prepared each year in the United States. Ziegler and Natta shared the 1963 Nobel Prize in chemistry Ziegler for discovering novel catalytic systems for alkene polymerization and Natta for stereoregular- polymerization. [Pg.614]

As stated above, olefin metathesis is in principle reversible, because all steps of the catalytic cycle are reversible. In preparatively useful transformations, the equilibrium is shifted to one side. This is most commonly achieved by removal of a volatile alkene, mostly ethene, from the reaction mixture. An obvious and well-established way to classify olefin metathesis reactions is depicted in Scheme 2. Depending on the structure of the olefin, metathesis may occur either inter- or intramolecularly. Intermolecular metathesis of two alkenes is called cross metathesis (CM) (if the two alkenes are identical, as in the case of the Phillips triolefin process, the term self metathesis is sometimes used). The intermolecular metathesis of an a,co-diene leads to polymeric structures and ethene this mode of metathesis is called acyclic diene metathesis (ADMET). Intramolecular metathesis of these substrates gives cycloalkenes and ethene (ring-closing metathesis, RCM) the reverse reaction is the cleavage of a cyclo-... [Pg.225]

Nafion-H (144), a perfluorinated resin-sulfonic acid, is an efficient Bronsted-acid catalyst which has two advantages it requires only catalytic amounts since it forms reversible complexes, and it avoids the destruction and separation of the catalyst upon completion of the reaction [94], Thus in the presence of Nafion-H, 1,4-benzoquinone and isoprene give the Diels-Alder adduct in 80% yield at 25 °C, and 1,3-cyclohexadiene reacts with acrolein at 25 °C affording 88 % of cycloadduct after 40 h, while the uncatalyzed reactions give very low yields after boiling for 1 h or at 100 °C for 3.5 h respectively [95], Other examples are given in Table 4.24. In the acid-catalyzed reactions that use highly reactive dienes such as isoprene and 2,3-dimethylbutadiene, polymerization of alkenes usually occurs with Nafion-H, no polymerization was observed. [Pg.189]

Nickel(II) complexes of ligands 38 (R=H,Me R =H,Me,Et,Tr,CH30 R =H, CH3O R =H, F, CH3O) are highly active catalysts for ethylene polymerization [86,159], whereas palladium(II) complexes possess catalytic properties in the copolymerization of CO and alkenes [160] (Scheme 36). [Pg.96]

Nickel-bpy and nickel-pyridine catalytic systems have been applied to numerous electroreductive reactions,202 such as synthesis of ketones by heterocoupling of acyl and benzyl halides,210,213 addition of aryl bromides to activated alkenes,212,214 synthesis of conjugated dienes, unsaturated esters, ketones, and nitriles by homo- and cross-coupling involving alkenyl halides,215 reductive polymerization of aromatic and heteroaromatic dibromides,216-221 or cleavage of the C-0 bond in allyl ethers.222... [Pg.486]

The most famous mechanism, namely Cossets mechanism, in which the alkene inserts itself directly into the metal-carbon bond (Eq. 5), has been proposed, based on the kinetic study [134-136], This mechanism involves the intermediacy of ethylene coordinated to a metal-alkyl center and the following insertion of ethylene into the metal-carbon bond via a four-centered transition state. The olefin coordination to such a catalytically active metal center in this intermediate must be weak so that the olefin can readily insert itself into the M-C bond without forming any meta-stable intermediate. Similar alkyl-olefin complexes such as Cp2NbR( /2-ethylene) have been easily isolated and found not to be the active catalyst precursor of polymerization [31-33, 137]. In support of this, theoretical calculations recently showed the presence of a weakly ethylene-coordinated intermediate (vide infra) [12,13]. The stereochemistry of ethylene insertion was definitely shown to be cis by the evidence that the polymerization of cis- and trans-dideutero-ethylene afforded stereoselectively deuterated polyethylenes [138]. [Pg.19]

Metallacyclobutanes have been proposed as intermediates in a number of catalytic reactions, and model studies with isolated transition metallacyclobutanes have played a large part in demonstrating the plausibility of the proposed mechanisms. Since the mechanisms of heterogeneously catalysed reactions are especially difficult to determine by direct study, model studies are particularly valuable. This article describes results which may be relevant to the mechanisms of isomerization of alkanes over metallic platinum by the bond shift process and of the oligomerization or polymerization of alkenes. [Pg.339]

The ability of transition-metal complexes to activate substrates such as alkenes and dihydrogen with respect to low-barrier bond rearrangements underlies a large number of important catalytic transformations, such as hydrogenation and hydroformy-lation of alkenes. However, activation alone is insufficient if it is indiscriminate. In this section we examine a particularly important class of alkene-polymerization catalysts that exhibit exquisite control of reaction stereoselectivity and regioselec-tivity as well as extraordinary catalytic power, the foundation for modern industries based on inexpensive tailored polymers. [Pg.509]

The chain-carrying catalytic species of alkene-polymerization reactions is commonly a tri-coordinate group 4 transition-metal cation of the general form L2M+P , where P is the polyalkene chain. A family of commercially important examples is based on the complex titanium ion57... [Pg.509]


See other pages where Alkenes catalytic polymerization is mentioned: [Pg.72]    [Pg.518]    [Pg.281]    [Pg.154]    [Pg.1119]    [Pg.143]    [Pg.281]    [Pg.143]    [Pg.174]    [Pg.589]    [Pg.96]    [Pg.53]    [Pg.1152]    [Pg.675]    [Pg.134]    [Pg.424]    [Pg.412]    [Pg.614]    [Pg.87]    [Pg.225]    [Pg.291]    [Pg.93]    [Pg.223]    [Pg.53]    [Pg.319]    [Pg.87]    [Pg.154]    [Pg.179]    [Pg.180]    [Pg.184]    [Pg.310]    [Pg.221]    [Pg.501]   
See also in sourсe #XX -- [ Pg.675 ]




SEARCH



Alkenes catalytic

Alkenes polymerization

© 2024 chempedia.info