Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkanes, Alkenes, and Alkynes via Coupling Reactions

The only common synthons for alkynes are acetylide anions, which react as good nucleophiles with alkyl bromides (D.E. Ames, 1968) or carbonyl compounds (p. 52, 62f.). [Pg.36]

In the synthesis of molecules without functional groups the application of the usual polar synthetic reactions may be cumbersome, since the final elimination of hetero atoms can be difficult. Two solutions for this problem have been given in the previous sections, namely alkylation with nucleophilic carbanions and alkenylation with ylides. Another direct approach is to combine radical synthons in a non-polar reaction. Carbon radicals are, however, inherently short-lived and tend to undergo complex secondary reactions. Eschenmoser s principle (p. 34f.) again provides a way out. If one connects both carbon atoms via a metal atom which (i) forms and stabilizes the carbon radicals and (ii) can be easily eliminated, the intermolecular reaction is made intramolecular, and good yields may be obtained. [Pg.36]

As stated above, intermolecular coupling reactions between carbon atoms are of limited use. In the classical Wurtz reaction two identical primary alkyl iodide molecules are reduced by sodium. n-Hectane (C100H202), for example, has been made by this method in 60% yield (G. Stallberg, 1956). The unsymmetrical coupling of two alkyl halides can be achieved via dialkylcuprates. The first halide, which may have a branched carbon chain, is lithiated and allowed to react with copper(I) salts. The resulting dialkylcuprate can then be coupled with alkyl or aryl iodides or bromides. Although the reaction probably involves radicals it is quite stereoselective and leads to inversion of chiral halides. For example, lithium diphenyl-cuprate reacts with (R)-2-bromobutane with 90% stereoselectivity to form (S)-2-phenylbutane (G.M. Whitesides, 1969). [Pg.36]

Trialkylboranes (p. 9), which can be synthesized from olefins and diborane, undergo alkyl coupling on oxidation with alkaline silver nitrate via short-lived silver organyls. Two out of three alkyl substituents are coupled in this reaction. Terminal olefins may be coupled by this reaction sequence in 40 - 80% yield. With non-terminal olefins yields drop to 30 - 30% (H.C. Brown, 1972C, 1975). [Pg.37]

Two efficient syntheses of strained cyclophanes indicate the synthetic potential of allyl or benzyl sulfide intermediates, in which the combined nucleophilicity and redox activity of the sulfur atom can be used. The dibenzylic sulfides from xylylene dihalides and -dithiols can be methylated with dimethoxycarbenium tetrafluoroborate (H. Meerwein, 1960 R.F. Botch, 1968, 1969 from trimethyl orthoformate and BF3, 3 4). The sulfonium salts are deprotonated and rearrange to methyl sulfides (Stevens rearrangement). Repeated methylation and Hofmann elimination yields double bonds (R.H. Mitchell, 1974). [Pg.38]

As stated above, intermolecular coupling reactions between carbon atoms are of limited use. In the classical Wurtz reaction two identical primary alkyl iodide molecules are reduced by sodium. /i-Hectane for example, has been made by this method in 60% [Pg.36]

Cis-olefins or cis./rjns-dienes can be obtained from alkynes in similar reaction sequences. The alkyne is first hydroborated and then treated with alkaline iodine. If the other substituents on boron are alkyl groups, a cis-olefin is formed (G. Zweifel, 1967). If they are cir-alkenyls, a cis, trans-diene results. The reactions are thought to be iodine-assisted migrations of the cis-alkenyl group followed by (rans-deiodoboronation (G. Zweifel, 1968). Trans, trans-dienes are made from haloalkynes and alkynes. These compounds are added one after the other to thexylborane. The alkenyl(l-haloalkenyl)thexylboranes are converted with sodium methoxide into trans, trans-dienes (E. Negishi, 1973). The thexyl group does not migrate. [Pg.37]


Many cyclization reactions via formation of metallacycles from alkynes and alkenes are known. Formally these reactions can be considered as oxidative cyclization (coupling) involving oxidation of the central metals. Although confusing, they are also called the reductive cyclization, because alkynes and alkenes are reduced to alkenes and alkanes by the metallacycle formation. Three basic patterns for the intermolecular oxidative coupling to give the metallacyclopentane 94, metallacyclopentene 95 and metallacyclopentadiene 96 are known. (For simplicity only ethylene and acetylene are used. The reaction can be extended to substituted alkenes and alkynes too). Formation of these metallacycles is not a one-step process, and is understood by initial formation of an tj2 complex, or metallacyclopropene 99, followed by insertion of the alkyne or alkene to generate the metallacycles 94-96, 100 and 101-103 (Scheme 7.1). [Pg.238]

The reaction of certain palladium-heteroatom complexes to alkenes and alkynes is a versatile tool for the synthesis of alkanes and alkene having heteroatoms attached. In particular, the various B-B, B-Si, and B-Sn compounds can be used for palladium-catalyzed borylation of alkenes and alkynes (Scheme 5-2). Borostannylation takes place at ambient temperature, whereas silylboration " only proceeds at a temperature above 80 °C due to the slow oxidative addition of a B-Si bond to a palladium(O) catalyst. Both reactions selectively provide cz j-products via addition of silicone or tin to the internal carbon and boron. The reactions are compatible with various functional groups for both terminal and internal alkynes. Cross-coupling reaction of boranes with organic halides selectively occurs at the terminal C-B bonds to provide regiodefined and stereodefined alkenylboron, alkenylsilicon, and alkenyltin compounds. [Pg.934]


See other pages where Alkanes, Alkenes, and Alkynes via Coupling Reactions is mentioned: [Pg.36]    [Pg.38]    [Pg.39]    [Pg.41]    [Pg.42]    [Pg.43]    [Pg.36]    [Pg.36]    [Pg.38]    [Pg.39]    [Pg.40]    [Pg.43]    [Pg.25]    [Pg.25]    [Pg.26]    [Pg.27]    [Pg.28]    [Pg.226]    [Pg.248]    [Pg.249]    [Pg.250]    [Pg.251]    [Pg.36]    [Pg.38]    [Pg.39]    [Pg.41]    [Pg.42]    [Pg.43]    [Pg.36]    [Pg.36]    [Pg.38]    [Pg.39]    [Pg.40]    [Pg.43]    [Pg.25]    [Pg.25]    [Pg.26]    [Pg.27]    [Pg.28]    [Pg.226]    [Pg.248]    [Pg.249]    [Pg.250]    [Pg.251]    [Pg.4]    [Pg.809]   


SEARCH



2- -2-alkenal alkanal

Alkanals, reactions

Alkane/alkene coupling

Alkanes alkenes and alkynes

Alkanes and alkenes

Alkanes reactions

Alkenes and alkynes

Alkyne coupling

Couplings alkenes

Reactions, coupled and

© 2024 chempedia.info