Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkaloid stereoselectivity

Wipf P, Kim Y (1992) Studies on the Synthesis of Stemona Alkaloids Stereoselective Preparation of the Hydroindole Ring System by Oxidative Cyclization of Tyrosine. Tetrahedron Lett 33 5477... [Pg.255]

Thermal and photochemical electrocyclic reactions are particularly useful in the synthesis of alkaloids (W. Oppolzer, 1973,1978 B K. Wiesner, 1968). A high degree of regio- and stereoselectivity can be reached, if cyclic olefin or enamine components are used in ene reactions or photochemical [2 + 2]cycloadditions. [Pg.297]

Stereoselective Acylations. Intramolecular Ftiedel-Crafts acylation reaction of A/-ataLkyl a-amino acid detivatives gives cycHc ketones with high enantioselectivity (100). This methodology has been used for the enantiospeciftc syntheses of tylophorine [482-20-2] and cryptopleutine [87302-53-2] the ptincipal representatives of phenanthroiadolizidine and phenanthroquiaolizidine alkaloids (qv) (101). [Pg.558]

Tetrahydropyridines 103 undergo a Michael reaction to afford [ran.s-(2,3)-cis-(2,6)-trisubstituted piperidines 104 (97T9553). The reaction is stereoselective (a single stereoisomer was obtained) and provides a convenient route to the 5,8-disubstituted indolizidine 105 and 1,4-disubstituted quinolizidine system 106 (found in Dendrobates alkaloids) by introduction of various alkyl, alkenyl, or... [Pg.291]

Perhydro derivatives of pyrido[l,2-7)][l,2]oxazines are frequently applied in the total synthesis of various alkaloids to control the stereochemistry, and pyrido[l,2-c][l,3]oxazines and [l,3]oxazino[3,4-u]quinolines were also used in the stereoselective syntheses of different alkaloids. Perhydropyrido[l,2-c][l,3]oxazines and their benzologs are formed form 2-(2-hydroxyethyl) piperidines and from their benzologs to justify the stereochemistry of 2-(2-hydroxyethyl) derivatives. Different optically active pipecolic acids can be prepared via 4-phenylperhydropyrido[2,l-c][l,4]oxazin-l-ones. [Pg.224]

The stereoselective addition of allylsilanes to enones was used to control the relative C-3-C-5 configuration in total syntheses of lycopodium alkaloids and of fawcettimine29,30. [Pg.940]

Enantioselective alcoholysis of racemic, prochiral, or meso cyclic anhydrides can be catalyzed by hydrolases, yielding the corresponding monoesters (Eigure 6.25). In most cases, the enantioselectivity was moderate ]75-77]. Organometallic catalysts or organocatalysts such as cinchona alkaloids are often more efficient than enzymes for the stereoselective ring opening of cyclic anhydrides. [Pg.143]

The utility of lOOC reactions in the synthesis of fused rings containing a bridgehead N atom such as pyrrolizidines, indolizidines, and quinolizidines which occur widely in a number of alkaloids has been demonstrated [64]. Substrates 242 a-d, that possess properly positioned aldoxime and alkene functions, were prepared from proline or pipecolinic acid 240 (Eq. 27). Esterification of 240 and introduction of unsaturation on N by AT-alkylation produced 241 which was followed by conversion of the carbethoxy function to an aldoxime 242. lOOC reaction of 242 led to stereoselective formation of various tricyclic systems 243. This versatile method thus allows attachment of various unsaturated side chains that can serve for generation of functionalized five- or six-membered (possibly even larger) rings. [Pg.35]

Preparative-scale fermentation of papaveraldine, the known benzyliso-quinoline alkaloid, with Mucor ramannianus 1839 (sih) has resulted in a stereoselective reduction of the ketone group and the isolation of S-papaverinol and S-papaverinol M-oxide [56]. The structure elucidations of both metabolites were reported to be based primarily on ID and 2D NMR analyses and chemical transformations [56]. The absolute configuration of S-papaverinol has been determined using Horeau s method of asymmetric esterification [56]. The structures of the compounds are shown in Fig. 7. [Pg.116]

Raddeanamine (360) is an unusual spirobenzylisoquinoline alkaloid having a tertiary methyl group in five-membered ring. Methylation of the corresponding ketone gave the methyl carbinol with the reverse stereochemistry, namely, the methyl carbinol 361 was obtained from the reaction of the ketone 294 with methyllithium (Scheme 64). Stereoselective synthesis of ( )-raddeanamine was accomplished by an intramolecular oxyfunctionalization via the 8-methyl-8,14-cycloberbine 364 (175). [Pg.194]

Having an efficient total synthesis of the indole alkaloid vindoline in mind, the Boger group [47] developed a facile entry to its core structure using a domino [4+2]/[3+2] cycloaddition. Reaction of the 1,3,4-oxadiazoles 4-139 led to 4-140 in high yield and excellent stereoselectivity via the intermediates 4-141 and 4-142 (Scheme 4.29). [Pg.300]

Oppolzer and Robbiani have reported highly stereoselective total syntheses of alkaloids such as chelidonine by an intramolecular o-quinodimethene/nitrostyrene-cycloaddition (Scheme S.7).34 (Benzocyclobutane is used as a source of quinodimethene). The high regio- and stereoselectivity in the intramolecular cycloaddition is remarkable a strong preference for transition state, exo-N02, over transition state, emfo-N02, is responsible for the stereoselectivity. [Pg.240]

Sequential pyrrolidine and hydantoin ring-forming reactions via intramolecular [2+3] cycloaddition have been applied to the stereoselective solid-phase synthesis of conformationally constrained tricyclic triazacyclopenta [C]pentalene scaffold 43 < 1999JOC8342>. These novel compounds 43 share the structural complexity characteristic of certain alkaloid natural products, angular triquinanes. The retrosynthetic analysis is shown in Scheme 87. [Pg.688]

Another challenge associated with the synthesis of strychnine, as well as other Strychnos alkaloids, is the stereoselective construction of the F-hydroxyethylidene side chain (Scheme 4.5). Strategies that rely on a late-stage olefination reaction of a C20 ketone often suffered from low diasterocontrol for the newly formed alkene, with the best exception provided by Kuehne (15 > 16) [10a, b, d, f]. Overman,... [Pg.72]

The stereoselective addition of the titanium enolate of A-acetyl-4-phenyl-l,3-thiazolidine-2-thione 153 to the cyclic A-acyl iminium ion 154 is utilized in the synthesis of (-)-stemoamide, a tricyclic alkaloid <06JOC3287>. The iminium ion addition product 155 undergoes magnesium bromide-catalyzed awtz-aldol reaction with cinnamaldehyde 156 to give adduct 157, which possesses the required stereochemistry of all chiral centers for the synthesis of (-)-stemoamide. [Pg.255]

The stereoselective total synthesis of both ( )-corynantheidine (61) (170,171) (alio stereoisomer) and ( )-dihydrocorynantheine (172) (normal stereoisomer) has been elaborated by Szdntay and co-workers. The key intermediate leading to both alkaloids was the alio cyanoacetic ester derivative 315, which was obtained from the previously prepared ketone 312 (173) by the Knoevenagel condensation accompanied by complete epimerization at C-20 and by subsequent stereoselective sodium borohydride reduction. ( )-Corynantheidine was prepared by modification of the cyanoacetate side chain esterification furnished diester 316, which underwent selective lithium aluminum hydride reduction. The resulting sodium enolate of the a-formyl ester was finally methylated to racemic corynantheidine (171). [Pg.198]


See other pages where Alkaloid stereoselectivity is mentioned: [Pg.358]    [Pg.270]    [Pg.274]    [Pg.307]    [Pg.309]    [Pg.120]    [Pg.103]    [Pg.38]    [Pg.306]    [Pg.689]    [Pg.721]    [Pg.987]    [Pg.290]    [Pg.297]    [Pg.258]    [Pg.205]    [Pg.164]    [Pg.183]    [Pg.215]    [Pg.178]    [Pg.194]    [Pg.328]    [Pg.561]    [Pg.347]    [Pg.24]    [Pg.692]    [Pg.80]    [Pg.152]    [Pg.231]    [Pg.343]    [Pg.49]    [Pg.517]    [Pg.187]    [Pg.392]   
See also in sourсe #XX -- [ Pg.443 ]

See also in sourсe #XX -- [ Pg.443 ]

See also in sourсe #XX -- [ Pg.29 , Pg.443 ]




SEARCH



© 2024 chempedia.info