Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkaline phosphatase , zinc enzyme reactions

Finally we should briefly mention the purple acid phosphatases, which, unlike the alkaline phosphatases, are able to hydrolyse phosphate esters at acid pH values. Their purple colour is associated with a Tyr to Fe(III) charge transfer band. The mammalian purple acid phosphatase is a dinuclear Fe(II)-Fe(III) enzyme, whereas the dinuclear site in kidney bean purple acid phosphatase (Figure 12.13) has a Zn(II), Fe(III) centre with bridging hydroxide and Asp ligands. It is postulated that the iron centre has a terminal hydroxide ligand, whereas the zinc has an aqua ligand. We do not discuss the mechanism here, but it must be different from the alkaline phosphatase because the reaction proceeds with inversion of configuration at phosphorus. [Pg.207]

One of the most important metals with regard to its role in enzyme chemistry is zinc. There are several significant enzymes that contain the metal, among which are carboxypeptidase A and B, alkaline phosphatase, alcohol dehydrogenase, aldolase, and carbonic anhydrase. Although most of these enzymes are involved in catalyzing biochemical reactions, carbonic anhydrase is involved in a process that is inorganic in nature. That reaction can be shown as... [Pg.804]

Currently, only a handful of examples of unique protein carboxylate-zinc interactions are available in the Brookhaven Protein Data Bank. Each of these entries, however, displays syn coordination stereochemistry, and two are bidentate (Christianson and Alexander, 1989) (Fig. 5). Other protein structures have been reported with iyw-oriented car-boxylate-zinc interactions, but full coordinate sets are not yet available [e.g., DNA polymerase (Ollis etal., 1985) and alkaline phosphatase (Kim and Wyckoff, 1989)]. A survey of all protein-metal ion interactions reveals that jyw-carboxylate—metal ion stereochemistry is preferred (Chakrabarti, 1990a). It is been suggested that potent zinc enzyme inhibition arises from syn-oriented interactions between inhibitor carboxylates and active-site zinc ions (Christianson and Lipscomb, 1988a see also Monzingo and Matthews, 1984), and the structures of such interactions may sample the reaction coordinate for enzymatic catalysis in certain systems (Christianson and Lipscomb, 1987). [Pg.290]

We shall now briefly outline some of the features of the zinc metalloenzymes which have attracted most research effort several reviews are available, these are indicated under the particular enzyme, and for more detailed information the reader is referred to these. Attention is focussed here, albeit briefly, on carbonic anhydrases,1241,1262,1268 carboxypeptidases, leucine amino peptidase,1241,1262 alkaline phosphatases and the RNA and DNA polymerases.1241,1262,1462 Finally, we examine alcohol dehydrogenases in rather more detail to illustrate the use of the many elegant techniques now available. These enzymes have also attracted much effort from modellers of the enzymic reaction and such studies, which reveal much interesting coordination chemistry and often new catalytic properties in their own right—and often little about the enzyme system itself (except to indicate possibilities), will be mentioned in the next section of this chapter. [Pg.1003]

These enzymes, which mainly catalyze hydrolytic reactions, have the zinc ions at their active sites. However, Zn ions also appear necessary in some cases for stabilization of the protein structure, e.g. in Cu/Zn SOD, insulin, liver alcohol dehydrogenase and alkaline phosphatases. [Pg.774]

Recently, Cottam and Ward (182) found that with the titration of apo-alkaline phosphatase with Zn(II) up to a mole ratio of four Zn(II/ dimer results in no increase in the S5C1 NMR linewidth, .. . while in previous studies of zinc activated biological reactions, a large increase in the chloride linewidth was observed with zinc bound to macromolecules. However, an increase in the chloride linewidth is observed when the pH is decreased below 5.0. This was interpreted as showing that Zn(II) in alkaline phosphatase is not exposed to solvent at pH > 5.0. In an ESR study of Cu(II) binding to alkaline phosphatase, Csopak and Falk (133) reported that two Cu(II) binds to the same specific sites as the two Zn(II), that the ESR spectrum for the one copper enzyme is different from the two copper enzymes, and that phosphate binding causes a shift of the spectral lines. [Pg.403]

Alkaline phosphatases form a well-known class of proteins that perform quite interesting and complicated reactions. As previously reported, Zn enzymes, like carboxypeptidases, thermolysin, and carbonic anhydrases, consist of only one Zn atom per active center. Most of the alkaline phosphatases consist of two 96-kDa subunits, each containing two Zn and one Mg ion. The alkaline phosphatase from E. coli has been crystallized and described in full detail [4], and a mechanism has been proposed. Several enzymes in this category have been mentioned in recent years, some of them also containing different metal ions, such as iron and zinc, as in the purple acid phosphatase [5], It is likely that the detailed structure and mechanism of many more examples of enzymes that remove or add phosphate groups to proteins will become available in the next decade. [Pg.588]

Metalloenzyme-catalyzed phosphoric ester hydrolysis can be illustrated by alkaline phosphatase, by far the most-investigated enzyme of this class. The protein is a dimer of 94 kDa containing two zinc(II) and one magnesium(II) ions per monomer, and catalyzes, rather unspecifically, the hydrolysis of a variety of phosphate monoesters as well as transphosphorylation reactions. The x-ray structure at 2.8 A resolution obtained on a derivative in which all the native metal ions were replaced by cadmium(II) reveals three metals in each subunit. [Pg.86]

Chymotrypsin secreted by the pancreas is one of the enzymes that breaks up proteins and polypeptides. Zinc plays an important role in accelerating the catalytic reaction rate. These metalloenzymes operate through activation of a carbonyl group by coordinating with its oxygen and a water molecule that acts as a nucleophile. An aCD with an appended Ni +-oxime complex at the secondary face of the aCD accelerated the reaction rate of hydrolysis of p-nitrophenyl acetate (Figure 12.5). The catalytic reaction rate is faster than that of the ocCD without appended Ni +. The reaction mechanism is reminiscent of the catalytic activity of the alkaline phosphatase enzyme. ... [Pg.222]


See other pages where Alkaline phosphatase , zinc enzyme reactions is mentioned: [Pg.212]    [Pg.157]    [Pg.144]    [Pg.13]    [Pg.233]    [Pg.652]    [Pg.158]    [Pg.2676]    [Pg.805]    [Pg.805]    [Pg.133]    [Pg.38]    [Pg.153]    [Pg.233]    [Pg.632]    [Pg.218]    [Pg.72]    [Pg.276]    [Pg.596]   
See also in sourсe #XX -- [ Pg.18 ]




SEARCH



Alkaline phosphatase

Alkaline phosphatase , zinc enzyme

Enzymes alkaline phosphatase

Phosphatases reactions

Zinc reaction

© 2024 chempedia.info