Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alignment preferred

Figure 1.2. Endo and exo pathway for the Diels-Alder reaction of cyclopentadiene with methyl vinyl ketone. As was first noticed by Berson, the polarity of the endo activated complex exceeds that of the exo counterpart due to alignment of the dipole moments of the diene and the dienophile K The symmetry-allowed secondary orbital interaction that is only possible in the endo activated complex is usually invoked as an explanation for the preference for endo adduct exhibited by most Diels-Alder reactions. Figure 1.2. Endo and exo pathway for the Diels-Alder reaction of cyclopentadiene with methyl vinyl ketone. As was first noticed by Berson, the polarity of the endo activated complex exceeds that of the exo counterpart due to alignment of the dipole moments of the diene and the dienophile K The symmetry-allowed secondary orbital interaction that is only possible in the endo activated complex is usually invoked as an explanation for the preference for endo adduct exhibited by most Diels-Alder reactions.
The viscosity of a suspension of ellipsoids depends on the orientation of the particle with respect to the flow streamlines. The ellipsoidal particle causes more disruption of the flow when it is perpendicular to the streamlines than when it is aligned with them the viscosity in the former case is greater than in the latter. For small particles the randomizing effect of Brownian motion is assumed to override any tendency to assume a preferred orientation in the flow. [Pg.596]

Within the plane of a nonwoven material, the fibers may be either completely isotropic or there may be a preferred fiber orientation or alignment usually with respect to a machine or processing direction. In the case of thicker dry-laid nonwovens, fiber orientation may be randomized in the third dimension, ie, that dimension which is perpendicular to the plane of the fabric, by a process known as needle-punching (7). This process serves to bind the fibers in the nonwoven by mechanical interlocking. [Pg.267]

Metallurgists originally, and now materials scientists (as well as solid-state chemists) have used erystallographic methods, certainly, for the determination of the structures of intermetallic compounds, but also for such subsidiary parepistemes as the study of the orientation relationships involved in phase transformations, and the study of preferred orientations, alias texture (statistically preferential alignment of the crystal axes of the individual grains in a polycrystalline assembly) however, those who pursue such concerns are not members of the aristocracy The study of texture both by X-ray diffraction and by computer simulation has become a huge sub-subsidiary field, very recently marked by the publication of a major book (Kocks el al. 1998). [Pg.177]

The synclinal conformation (sc) is appropriate for overlap of an oxygen nonbonded pair with the a C—Cl orbital. The preferred ap relationship, requires an antiperiplanar alignment of a lone-pair orbital with the bond to the electronegative substituent. Because of the donor-acceptor nature of the interaction it is enhanced in the order F < O < N for the donor (D) atom and N < O < F for the acceptor (A) atom. [Pg.154]

Even molecules as simple as dimethoxymethane give evidence of anomeric effects. The preferred conformation of dimethoxymethane aligns each C—O bond with a lone-pair orbital of the adjacent oxygen. ... [Pg.155]

Only the bisected conformation aligns the cyclopropyl C—C orbitals for effective overlap. Crystal structure determinations on two cyclopropylmethyl cabons with additional stabilizing substituents, C and D, have confirmed file preference for the bisected geometry. The crystal structures of C and D are shown in Fig. 5.8. [Pg.285]

The preferred alignment of orbitals for a 1,2-hydride or 1,2-alkyl shift involves coplanarity of the p orbital at the carbocation ion center and the a orbital of the migrating group. [Pg.322]

In view of the restrictions on the mode of approach of the radical to the double bond, significant strain develops at the transition state, and this requires rotation of the benzylic methylene group out of its preferred coplanar alignment. [Pg.692]


See other pages where Alignment preferred is mentioned: [Pg.432]    [Pg.35]    [Pg.72]    [Pg.458]    [Pg.693]    [Pg.432]    [Pg.35]    [Pg.72]    [Pg.458]    [Pg.693]    [Pg.1647]    [Pg.540]    [Pg.550]    [Pg.401]    [Pg.187]    [Pg.194]    [Pg.197]    [Pg.266]    [Pg.114]    [Pg.171]    [Pg.188]    [Pg.76]    [Pg.214]    [Pg.503]    [Pg.280]    [Pg.294]    [Pg.156]    [Pg.244]    [Pg.215]    [Pg.216]    [Pg.163]    [Pg.177]    [Pg.241]    [Pg.679]    [Pg.76]    [Pg.175]    [Pg.355]    [Pg.762]    [Pg.482]    [Pg.1075]    [Pg.61]    [Pg.517]    [Pg.183]    [Pg.7]    [Pg.61]    [Pg.177]   
See also in sourсe #XX -- [ Pg.111 ]




SEARCH



© 2024 chempedia.info