Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aldol Reactions Using Polymer-Supported Silyl Enol Ethers

Silyl enol ethers are versatile reagents in organic synthesis [83]. They are used as isol-able enolate equivalents and many useful reactions have been developed using silyl enol ethers [83]. As a new approach to exploit an efficient method for combinatorial synthesis [84], silyl enol ethers were successfully immobilized on to a polymer. Polymer-supported silyl enol ethers (PSSEEs) were prepared according to Sch. 10 [85]. In aldol reactions of PSSEEs with aldehydes, it was again found that Sc(OTf)3 was an efficient catalyst [86]. An example of the preparation of a 1,3-diol library by use of PSSEEs is shown in Sch. 11. In all cases, the reactions proceeded smoothly to afford the corresponding 1,3-diols in good yields. 1,3-Diols are successfully cleaved from the [Pg.901]


In recent years, catalytic asymmetric Mukaiyama aldol reactions have emerged as one of the most important C—C bond-forming reactions [35]. Among the various types of chiral Lewis acid catalysts used for the Mukaiyama aldol reactions, chirally modified boron derived from N-sulfonyl-fS)-tryptophan was effective for the reaction between aldehyde and silyl enol ether [36, 37]. By using polymer-supported N-sulfonyl-fS)-tryptophan synthesized by polymerization of the chiral monomer, the polymeric version of Yamamoto s oxazaborohdinone catalyst was prepared by treatment with 3,5-bis(trifluoromethyl)phenyl boron dichloride ]38]. The polymeric chiral Lewis acid catalyst 55 worked well in the asymmetric aldol reaction of benzaldehyde with silyl enol ether derived from acetophenone to give [i-hydroxyketone with up to 95% ee, as shown in Scheme 3.16. In addition to the Mukaiyama aldol reaction, a Mannich-type reaction and an allylation reaction of imine 58 were also asymmetrically catalyzed by the same polymeric catalyst ]38]. [Pg.84]

Scandium triflate-catalyzed aldol reactions of silyl enol ethers with aldehyde were successfully carried out in micellar systems and encapsulating systems. While the reactions proceeded sluggishly in water alone, strong enhancement of the reactivity was observed in the presence of a small amount of a surfactant. The effect of surfactant was attributed to the stabiMzation of enol silyl ether by it. Versatile carbon-carbon bondforming reactions proceeded in water without using any organic solvents. Cross-linked Sc-containing dendrimers were also found to be effective and the catalyst can be readily recycled without any appreciable loss of catalytic activity.Aldol reaction of 1-phenyl-l-(trimethylsilyloxy) ethylene and benzaldehyde was also conducted in a gel medium of fluoroalkyl end-capped 2-acrylamido-2-methylpropanesulfonic acid polymer. A nanostmctured, polymer-supported Sc(III) catalyst (NP-Sc) functions in water at ambient temperature and can be efficiently recycled. It also affords stereoselectivities different from isotropic solution and solid-state scandium catalysts in Mukaiyama aldol and Mannich-type reactions. [Pg.254]


See other pages where Aldol Reactions Using Polymer-Supported Silyl Enol Ethers is mentioned: [Pg.494]    [Pg.976]    [Pg.273]    [Pg.635]    [Pg.635]    [Pg.506]    [Pg.635]   


SEARCH



Aldol reaction enol ethers

Aldol reaction silyl enol ether

Enolates aldol reactions

Enolates silylation

Enolates, silyl reactions

Enols aldol reactions

Ether polymers

Polymer silyl enol ethers

Silyl aldol reaction

Silyl enol ethers

Silyl enol ethers reaction

Silyl enolate

Silyl enolates

Silyl ethers reactions

Silyl polymer-supported

Silyl using

Silylated aldol reactions

Silylated aldols

Silylation reactions

Using enolates

© 2024 chempedia.info