Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aldol reaction water catalyzed

In Section 3.5 on alkene isomerization, it was mentioned that Li and co-workers reported a RuCl2(PPh3)3-catalyzed shuffling of functional groups of allylic alcohols in water (Eq. 3.35).140 Since the reaction proceeds through an enol intermediate, allyl alcohols can thus be considered as enol equivalents.203 This has been developed into an aldol-type reaction by reacting allyl alcohols with aldehyde (Scheme 3.11).204 The presence of In(OAc)3 promoted the aldol reaction with a-vinylbenzyl alcohol and aldehyde.205... [Pg.84]

Lewis-Acid Catalyzed. Recently, various Lewis acids have been examined as catalyst for the aldol reaction. In the presence of complexes of zinc with aminoesters or aminoalcohols, the dehydration can be avoided and the aldol addition becomes essentially quantitative (Eq. 8.97).245 A microporous coordination polymer obtained by treating anthracene- is (resorcinol) with La(0/Pr)3 possesses catalytic activity for ketone enolization and aldol reactions in pure water at neutral pH.246 The La network is stable against hydrolysis and maintains microporosity and reversible substrate binding that mimicked an enzyme. Zn complexes of proline, lysine, and arginine were found to be efficient catalysts for the aldol addition of p-nitrobenzaldehyde and acetone in an aqueous medium to give quantitative yields and the enantiomeric excesses were up to 56% with 5 mol% of the catalysts at room temperature.247... [Pg.268]

Sc(OTf)3-catalyzed aldol reactions have been successfully performed in micellar systems (Scheme 15).59 The catalyst activity is remarkably enhanced by adding a small amount of a surfactant. Allylation60 and Mannich-type reactions61 also proceed smoothly in water in the presence of a catalytic amount of Sc(OTf)3 and a surfactant. [Pg.405]

Indium trichloride349-351 is a mild Lewis acid that is effective for various kinds of Lewis-acid-catalyzed reactions such as Diels-Alder reactions (Scheme 85), aldol reactions, and Friedel Crafts reactions. Since indium trichloride is stable in water, several aqueous reactions have been investigated (Scheme 85) indium(III) triflate is also used as a Lewis acid. [Pg.436]

In the present Ln(OTf)3-catalyzed aldol reactions in aqueous media, the amount of water strongly influences the yields of the aldol adducts. The effects of the amount of water on the yields in the model reaction of benzaldehyde with the silyl enol ether 2 in the presence of 10 mol% Yb(OTf)3 in THF were investigated (Eq. 2). The best yields are obtained when the amount of water present in THF is in the range 10-20 %. When the amount of water is increased, the yield begins to decrease The reaction system becomes a two phase one when the... [Pg.5]

Judging from these findings, the mechanism of Lewis acid catalysis in water (for example, aldol reactions of aldehydes with silyl enol ethers) can be assumed to be as follows. When metal compounds are added to water, the metals dissodate and hydration occurs immediatdy. At this stage, the intramolecular and intermolecular exchange reactions of water molecules frequently occur. If an aldehyde exists in the system, there is a chance that it will coordinate to the metal cations instead of the water molecules and the aldehyde is then activated. A silyl enol ether attacks this adivated aldehyde to produce the aldol adduct. According to this mechanism, it is expected that many Lewis acid-catalyzed reactions should be successful in aqueous solutions. Although the precise activity as Lewis acids in aqueous media cannot be predicted quantitatively... [Pg.6]

While the Lewis acid-catalyzed aldol reactions in aqueous solvents described above are catalyzed smoothly by several metal salts, a certain amount of an organic solvent such as THF had still to be combined with water to promote the reactions efficiently. This requirement is probably because most substrates are not soluble in water. To avoid the use of the organic solvents, we have developed a new reaction system in which metal triflates catalyze aldol reactions in water with the aid of a small amount of a surfactant, such as sodium dodecyl sulfate (SDS). [Pg.7]

With these results in hand, we have next introduced new types of Lewis acids, e.g scandium tris(-dodecyl sulfate) (4a) and scandium trisdodecanesul-fonate (5a) (Chart 1).[1S1 These Lewis acid-surfactant-combined catalysts (LASCs) were found to form stable colloidal dispersions with organic substrates in water and to catalyze efficiently aldol reactions of aldehydes with very water-labile silyl enol ethers. [Pg.7]

The catalytic asymmetric aldol reaction has been applied to the LASC system, which uses copper bis(-dodecyl sulfate) (4b) instead of CufOTf. 1261 An example is shown in Eq. 6. In this case, a Bronsted add, such as lauric add, is necessary to obtain a good yield and enantioseledivity. This example is the first one involving Lewis acid-catalyzed asymmetric aldol reactions in water without using organic solvents. Although the yield and the selectivity are still not yet optimized, it should be noted that this appredable enantioselectivity has been attained at ambient temperature in water. [Pg.10]

Lewis acids are quite often used as catalysts in organic synthesis. Although most Lewis acids decompose in water, it was found that rare earth triflates such as Sc(OTf)3, Yb(OTf)3, etc. can be used as Lewis acid catalysts in water or water-containing solvents (water-compatible Lewis acids) [6-9]. For example, the Mukaiyama aldol reactions of aldehydes with silyl enol ethers were catalyzed by Yb(OTf)3 in water-THF (1 4) to give the corresponding aldol adducts in high yields [10, 11]. Interestingly, when the reactions were carried out in dry THF (without water), the yield of the aldol adducts was very low (ca. 10%). Thus, this catalyst is not only compatible with water but also is activated by water, probably due to dissociation of the counteranions from the Lewis acidic metal. Furthermore, the catalyst can be easily recovered and reused. [Pg.3]

Superheated and supercritical water are used in several applications. Supercritical water is most often used in the destruction of organic wastes, including some chemical warfare agents, as an alternative to incineration (Katritzky et al., 1996 Sherman et al., 1998). Recent reports describe the use of both forms as a solvent and as a reactant in synthetic chemistry (Katritzky et al., 1996 An et al., 1997). Some of the reactions investigated include metal-mediated alkyne cyclizations, Pd-catalyzed al-kene arylations, aldol reactions, the Fischer indole synthesis, and hydrolysis reactions. Waterborne coatings and the destruction of wastes in supercritical water are fully... [Pg.166]

Aliphatic and aromatic aldehydes condense with aliphatic and aromatic primary amines to form JV-substituted imines. The reaction is catalyzed by acids and is generally carried out by refluxing the amine and the carbonyl compound with an azeotroping agent in order to separate the water formed. The aliphatic imines (C5-C10) are obtained in good yield but are unstable and must be used directly after their distillation [2b], Tertiary aliphatic and aromatic aldehydes at room temperature react readily and nearly quantitatively with amines to give the imines without the aid of catalysts [la]. Primary aliphatic aldehydes tend to give polymeric materials with amines as a result of the ease of their aldol condensation [3]. The use of low temperatures and potassium hydroxide favors the formation of the imine product [4a, b]. Secondary aliphatic aldehydes readily form imines with amines with little or no side reactions [5]. [Pg.383]

In the (S)-proline-catalyzed aldol reactions, the addition of a small amount of water did not affect the stereoselectivities [6]. However, a large amount of water often resulted in products with low enantiomeric excess water molecules interrupt the hydrogen bonds and ionic interactions critical for the transition states that lead to the high stereocontrol. For example, in the (S)-proline-catalyzed aldol reaction of acetone and 4-nitrobenzaldehyde in DMSO, the addition of 10% (v/v) water to the reaction mixture reduced the ee-value from 76% (no water) to 30% [6]. Note that the addition of a small amount of water into (S)-proline-catalyzed reactions often accelerates the reaction rate, and the addition of water should be investigated when optimizing these reactions [61]. [Pg.35]

In the case of the 9-catalyzed aldol reactions of ketones and aldehyde donors that have a high affinity for water (e.g., chloral, trifluoroacetaldehyde, aqueous formaldehyde or the corresponding hydrates of the aldehydes), the addition of 100-500 mol% water to the reaction mixture accelerated the reaction rate and afforded the products with higher enantiomeric excess (Scheme 2.13) [16]. The presence of a catalytic amount of water (20 or 50 mol%) or no addition of water... [Pg.35]

Aldol reactions using catalyst 12 were also performed with water without any organic solvent (Table 2.9) [15]. In these examples, it is assumed that the reaction occurred in the organic phase composed of reactants and the catalyst separated from the water phase. A large excess of ketone was used in these reactions. Catalysts possessing a tert-butyldimethylsilyl (TBS) or a triisopropylsilyl (TIPS) group instead of the tert-butyldiphenylsilyl (TBDPS) group on 12 also effectively catalyzed the reaction with water, but hydroxyproline 2 did not catalyze the reaction under the same conditions this indicated that the hydrophobic substituents of... [Pg.37]

Table 2.9 Direct asymmetric aldol reactions with water catalyzed by 12 [15]. Table 2.9 Direct asymmetric aldol reactions with water catalyzed by 12 [15].
Ruthenium-catalyzed cycloisomerization of diyn-ols to diene-ones or diene-als was discovered by Trost and Rudd [34], and provided the potential for the intramolecular aldol condensation. In the reaction, water acts as a reactant (Eqs. 15,16). The reaction was proposed to proceed via a ruthenacyclopenta-diene intermediate. [Pg.330]

Fig. 10.3 Asymmetric aldol reaction catalyzed by tryptophan in water. Fig. 10.3 Asymmetric aldol reaction catalyzed by tryptophan in water.
Dual mechanism of zinc-proline catalyzed aldol reactions in water. Chemical Communications (Camhridge, England), 1482-1484. [Pg.17]

The catalyzed aldol reaction in pure water offers a cautionary tale on overinterpretation of computationally derived mechanisms. The term catalysis may seem to be inappropriately applied to the role of water in the aldol reaction. The aldol reaction is in fact usually much slower in water than in organic solvents. Rather, as will be demonstrated, the catalytic role of water is to create an alternate pathway with a lower barrier than that for the noncatalytic, but aqueous, reaction. [Pg.426]

In an effort to understand the role of nomicotine in catalyzing aqueous aldol reactions, Noodleman and Janda examined the aldol reaction of acetaldehyde and acetone in an organic solvent (THF, tetrahydrofuran) and water. The calculations were performed at B3LYP/6-311-l-G(2d,2p)//B3LYP/6-311(d,p) and were corrected for ZPVE at HF/3-21G and the effects of solvent using the COSMO model at B3LYP/6-311(d,p). [Pg.426]

A recent notable finding in this field is Mukaiyama aldol reactions in aqueous medium (THF H20 = 9 1) catalyzed by metal salts. Lewis acids based on Fe(II), Cu(II), and Zn(II), and those of some main group metals and lanthanides are stable in water. Remarkably, the aldol reaction shown in Sch. 29 occurs more rapidly than the hydrolysis of the silyl enol ether [137]. In the presence of surfactants (dodecyl sulfates or dodecane sulfonate salts), reactions of thioketene silyl acetals with benzaldehyde can be performed in water [138]. [Pg.623]

Several examples of Sc(OTf)3-catalyzed aldol reactions in micellar systems are shown in Table 4. Not only aromatic, but also aliphatic and a,j8-unsaturated aldehydes react with silyl enol ethers to afford the corresponding aldol adducts in high yields. Aqueous formaldehyde solution also worked well. Even the ketene silyl acetals, which readily hydrolyze in the presence of a small amount of water, reacted with aldehydes... [Pg.897]


See other pages where Aldol reaction water catalyzed is mentioned: [Pg.270]    [Pg.272]    [Pg.273]    [Pg.348]    [Pg.77]    [Pg.11]    [Pg.31]    [Pg.6]    [Pg.7]    [Pg.40]    [Pg.4]    [Pg.791]    [Pg.58]    [Pg.96]    [Pg.112]    [Pg.2]    [Pg.36]    [Pg.37]    [Pg.247]    [Pg.321]    [Pg.412]    [Pg.104]    [Pg.11]    [Pg.160]    [Pg.911]   
See also in sourсe #XX -- [ Pg.426 , Pg.427 , Pg.428 ]




SEARCH



Aldol water

Water aldol reactions

Water catalyzed reactions

© 2024 chempedia.info