Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aldol enzymatic

Aldol Additions. These reactions catalyzed by lyases are perhaps the most synthetically useful enzymatic reactions for carbon—carbon bond formation. Because of the broad synthetic utiUty of this method, the enzymatic aldol reactions have received considerable attention in recent years and have been extensively covered in a number of books and reviews (10,138—140). [Pg.346]

Literally hundreds of aldehydes have so far been tested successfully by enzymatic assay and preparative experiments as a replacement for (18) in rabbit muscle FruA catalyzed aldol additions [16,25], and most of the corresponding aldol products have been isolated and characterized. The rabbit FruA can discriminate racemic dl-(18), its natural substrate, with high preference for the D-antipode, but kinetic enantioselec-tivity for nonionic aldehydes is rather low [84,89]. [Pg.285]

Figure 10.19 Oxidative enzymatic generation of dihydroxyacetone phosphate in situ for stereoselective aldol reactions using DHAP aldolases (a), and extension by pH-controlled, integrated precursor preparation and product liberation (b). Figure 10.19 Oxidative enzymatic generation of dihydroxyacetone phosphate in situ for stereoselective aldol reactions using DHAP aldolases (a), and extension by pH-controlled, integrated precursor preparation and product liberation (b).
Figure 10.20 Substrate analogs of dihydroxyacetone phosphate accessible by the CPO oxidation method, and spontaneous, reversible formation of arsenate or vanadate analogs of dihydroxyacetone phosphate/n s/tu for enzymatic aldol additions. Figure 10.20 Substrate analogs of dihydroxyacetone phosphate accessible by the CPO oxidation method, and spontaneous, reversible formation of arsenate or vanadate analogs of dihydroxyacetone phosphate/n s/tu for enzymatic aldol additions.
Figure 10.21 Aldolase-catalyzed asymmetric synthesis of uncommon L-configured sugars (a), and selected examples of carbohydrate-related product structures that are accessible by enzymatic aldolization (b). Figure 10.21 Aldolase-catalyzed asymmetric synthesis of uncommon L-configured sugars (a), and selected examples of carbohydrate-related product structures that are accessible by enzymatic aldolization (b).
Flgure10.23 Sialyl Lewis -related selectin inhibitorandfluorogenicscreening compound for transketolase prepared using enzymatic aldolization, and multienzymatic oxidation-aldolization strategy for the synthesis of bicyclic higher carbon sugars. [Pg.292]

Figure 10.26 Short enzymatic synthesis of L-fucose and hydrophobic analogs, and of L-rhamnose, by aldolization-ketol isomerization, including kinetic resolution of racemic hydroxyaldehyde precursors. Figure 10.26 Short enzymatic synthesis of L-fucose and hydrophobic analogs, and of L-rhamnose, by aldolization-ketol isomerization, including kinetic resolution of racemic hydroxyaldehyde precursors.
Several cyditol derivatives of varying ring size, for example, (69)/(70), have been prepared based on an enzymatic aldolization as the initial step. Substrates carrying suitably installed C,H-acidic functional groups such as nitro, ester, phosphonate (or halogen) functionalities made use of facile intramolecular nucleophilic (or radical) cyclization reactions ensuing, or subsequent to, the enzyme-catalyzed aldol addition (Figure 10.27) [134—137]. [Pg.295]

Figure 10.32 Applications of bidirectional chain extension for the synthesis of disaccharide mimetics and of annulated and spirocyclic oligosaccharide mimetics using tandem enzymatic aldol additions, including racemate resolution under thermodynamic control. Figure 10.32 Applications of bidirectional chain extension for the synthesis of disaccharide mimetics and of annulated and spirocyclic oligosaccharide mimetics using tandem enzymatic aldol additions, including racemate resolution under thermodynamic control.
By this concept, a reversible enzymatic aldol reaction generates a mixture of l-threo/erythro aldol diastereomers (133) from which the i-threo isomer is preferentially decomposed by an irreversible decarboxylation to furnish aromatic aminoalcohol (R)-(134) vhth 78% ee in high yield. [Pg.310]

A tandem enzymatic aldol-intramolecular Homer-Wadsworth-Emmons reaction has been used in the synthesis of a cyclitol.310 The key steps are illustrated in Scheme 8.33. The phosphonate aldehyde was condensed with dihydroxyacetone phosphate (DHAP) in water with FDP aldolase to give the aldol adduct, which cyclizes with an intramolecular Horner-Wadsworth-Emmons reaction to give the cyclo-pentene product. The one-pot reaction takes place in aqueous solution at slightly acidic (pH 6.1-6.8) conditions. The aqueous Wittig-type reaction has also been investigated in DNA-templated synthesis.311... [Pg.279]

Figure 6.7 Enzymatic coupling to drive aldol reaction equilibrium in the synthetic direction... Figure 6.7 Enzymatic coupling to drive aldol reaction equilibrium in the synthetic direction...
Chiral Hvdroxvaldehvdes. Similarly, optically active lactaldehyde and a-hydroxybutyraldehyde, both useful aldol acceptors, can be prepared enzymatically (10) according to the scheme shown in Figure 9. [Pg.325]

The main drawback of the DHAP-dependent aldolases is their strict specificity for the donor substrate. Apart from the scope limitation that this fact represents, DHAP is expensive to be used stoichiometrically in high-scale synthesis, and labile at neutral and basic pH, and therefore its effective concentration decreases over time in enzymatic reaction media, hindering the overall yield of the aldol reaction. In addition, due to the presence of a phosphate group in both DHAP and the... [Pg.63]

Here, we will focus on the enzymatic routes since enzymatic preparation of DHAP is usually coupled with the aldol addition catalyzed by the aldolase representing genuine multi-enzyme systems. [Pg.64]

Scheme 4.5 Enzymatic routes to DHAP based in the use of glycerophosphate oxidase (GPO) coupled with the aldolase-catalyzed reaction and with dephosphorylation of the aldol adduct. Scheme 4.5 Enzymatic routes to DHAP based in the use of glycerophosphate oxidase (GPO) coupled with the aldolase-catalyzed reaction and with dephosphorylation of the aldol adduct.
When DHAP-dependent aldolases are used as catalyst of the aldol reaction, a phosphorylated azido or amino polyhydroxyketone is obtained. The phosphate may be cleaved enzymatically or reductively cleaved under the hydrogenation conditions of the next step in which the azide is reduced to the amine. Intramolecular imine formation occurs spontaneously when the azide is reduced. The intramolecular reductive amination is the second key step of the aldolase-mediated synthesis of iminocyclitols. In general, delivery of hydrogen onto five- and six-membered ring imines occurs from the face opposite to the C4 hydroxyl group. [Pg.69]

Rare or unnatural monosaccharides have many useful applications as nonnutritive sweeteners, glycosidase inhibitors and so on. For example, L-glucose and L-fructose are known to be low-calorie sweeteners. In addition, rare or unnatural monosaccharides are potentially useful as chiral building blocks for the synthesis of biologically active compounds. Therefore, these compounds have been important targets for the development of enzymatic synthesis based in the use of DHAP-dependent aldolases alone or in combination with isomerases. Fessner et al. showed that rare ketose-1-phosphates could be reached not only by aldol addition catalyzed by DHAP-dependent aldolases, but by enzymatic isomerization/ phosphorylation of aldoses [35]. Thus, for example, L-fructose can be prepared... [Pg.71]

Scheme 4.15 Enzymatic synthesis of L-glucose and L-fucose by aldolization/isomerization. Scheme 4.15 Enzymatic synthesis of L-glucose and L-fucose by aldolization/isomerization.
FSA is an interesting novel tool in chemoenzymatic synthesis. It use greatly simplifies the enzymatic procedures based on the use of DffAP-dependent aldolases since it is employs non-phosphorylated donors and, as a consequence, the reaction products do not require a subsequent dephosphorylation step. Unfortu-natly, only one stereoconfiguration of the aldol adduct is accessible. [Pg.78]

The synthesis pathway of quinolizidine alkaloids is based on lysine conversion by enzymatic activity to cadaverine in exactly the same way as in the case of piperidine alkaloids. Certainly, in the relatively rich literature which attempts to explain quinolizidine alkaloid synthesis °, there are different experimental variants of this conversion. According to new experimental data, the conversion is achieved by coenzyme PLP (pyridoxal phosphate) activity, when the lysine is CO2 reduced. From cadeverine, via the activity of the diamine oxidase, Schiff base formation and four minor reactions (Aldol-type reaction, hydrolysis of imine to aldehyde/amine, oxidative reaction and again Schiff base formation), the pathway is divided into two directions. The subway synthesizes (—)-lupinine by two reductive steps, and the main synthesis stream goes via the Schiff base formation and coupling to the compound substrate, from which again the synthetic pathway divides to form (+)-lupanine synthesis and (—)-sparteine synthesis. From (—)-sparteine, the route by conversion to (+)-cytisine synthesis is open (Figure 51). Cytisine is an alkaloid with the pyridone nucleus. [Pg.89]


See other pages where Aldol enzymatic is mentioned: [Pg.86]    [Pg.445]    [Pg.277]    [Pg.294]    [Pg.295]    [Pg.296]    [Pg.297]    [Pg.297]    [Pg.301]    [Pg.311]    [Pg.311]    [Pg.29]    [Pg.558]    [Pg.11]    [Pg.133]    [Pg.798]    [Pg.643]    [Pg.236]    [Pg.211]    [Pg.212]    [Pg.217]    [Pg.349]    [Pg.187]    [Pg.327]    [Pg.318]    [Pg.74]    [Pg.203]   
See also in sourсe #XX -- [ Pg.113 ]




SEARCH



Aldol reaction enzymatic

Aldol reaction enzymatic alternative

Enzymatic aldol additions

Enzymatic aldol condensation

Enzymatic aldolization technique

Tandem enzymatic aldol-intramolecular

© 2024 chempedia.info