Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aldol condensation formate

An attempt to anomerize t-butyl 3,4-0-isopropylidene-a-L-cry//tro-pento-pyranosidulose (310) by heating with DBU in dichloromethane yielded instead the dimer (311), which is the product of an aldol condensation. Formation of... [Pg.112]

The mechanism of the reaction between aromatic aldehydes and esters probably involves the intermediate formation of an aldol (hence the name— Claisen aldol condensation) ... [Pg.710]

Allyl aryl ethers are used for allylation under basic conditionsfh], but they can be cleaved under neutral conditions. Formation of the five-membered ring compound 284 based on the cyclization of 283 has been applied to the syntheses of methyl jasmonate (285)[15], and sarkomycin[169]. The trisannulation reagent 286 for steroid synthesis undergoes Pd-catalyzed cyclization and aldol condensation to afford CD rings 287 of steroids with a functionalized 18-methyl group 170]. The 3-vinylcyclopentanonecarboxylate 289, formed from 288, is useful for the synthesis of 18-hydroxyestrone (290)[I7I]. [Pg.328]

Like aldol condensations Claisen condensations always involve bond formation between the a carbon atom of one molecule and the carbonyl carbon of another... [Pg.889]

Aldol condensation (Sections 18 9-18 10) When an aldol ad dition IS carried out so that the 3 hydroxy aldehyde or ke tone dehydrates under the conditions of its formation the product IS described as ansing by an aldol condensation... [Pg.1275]

Robinson annotation (Section 18 13) The combination of a Michael addition and an intramolecular aldol condensation used as a synthetic method for nng formation... [Pg.1293]

In Robinson s now well-known suggestions, regarding the processes by which alkaloids may be produced in plants, two main reactions are used j the aldol condensation and the similar condensation of carbinol-amines, resulting from the combination of an aldehyde or ketone with ammonia or an amine, and containing the group. C(OH). N., with substances in which the group, CH. CO. is present. By these reactions it is possible to form the alkaloid skeleton, and the further necessary changes postulated include oxidations or reductions and elimination of water for the formation of an aromatic nucleus or of an ethylene derivative. [Pg.814]

An important side reaction observed during methylenation of 17a-acetoxy 20-ketones (4) is the formation of the unsaturated lactones (6) in high yield. These compounds arise by aldol condensation and dehydration. [Pg.115]

The key step to this first reported case of the highly diastereoselective addition of a fluorinated enolate in an aldol process is the selective formation of the enolate a,a-Difluonnated enolates prepared by a metallation process employing either a zinc-copper couple [S] or reduced titanium species [9] undergo aldol condensation smoothly (equation 9) (Table 5)... [Pg.617]

The azlactones of a-benzoylaminocinnamic acids have traditionally been prepared by the action of hippuric acid (1, Ri = Ph) and acetic anhydride upon aromatic aldehydes, usually in the presence of sodium acetate. The formation of the oxazolone (2) in Erlenmeyer-Plochl synthesis is supported by good evidence. The method is a way to important intermediate products used in the synthesis of a-amino acids, peptides and related compounds. The aldol condensation reaction of azlactones (2) with carbonyl compounds is often followed by hydrolysis to provide unsaturated a-acylamino acid (4). Reduction yields the corresponding amino acid (6), while drastic hydrolysis gives the a-0X0 acid (5). ... [Pg.229]

Chiral salen chromium and cobalt complexes have been shown by Jacobsen et al. to catalyze an enantioselective cycloaddition reaction of carbonyl compounds with dienes [22]. The cycloaddition reaction of different aldehydes 1 containing aromatic, aliphatic, and conjugated substituents with Danishefsky s diene 2a catalyzed by the chiral salen-chromium(III) complexes 14a,b proceeds in up to 98% yield and with moderate to high ee (Scheme 4.14). It was found that the presence of oven-dried powdered 4 A molecular sieves led to increased yield and enantioselectivity. The lowest ee (62% ee, catalyst 14b) was obtained for hexanal and the highest (93% ee, catalyst 14a) was obtained for cyclohexyl aldehyde. The mechanism of the cycloaddition reaction was investigated in terms of a traditional cycloaddition, or formation of the cycloaddition product via a Mukaiyama aldol-reaction path. In the presence of the chiral salen-chromium(III) catalyst system NMR spectroscopy of the crude reaction mixture of the reaction of benzaldehyde with Danishefsky s diene revealed the exclusive presence of the cycloaddition-pathway product. The Mukaiyama aldol condensation product was prepared independently and subjected to the conditions of the chiral salen-chromium(III)-catalyzed reactions. No detectable cycloaddition product could be observed. These results point towards a [2-i-4]-cydoaddition mechanism. [Pg.162]

The addition of the a-carbon of an enolizable aldehyde or ketone 1 to the carbonyl group of a second aldehyde or ketone 2 is called the aldol reaction It is a versatile method for the formation of carbon-carbon bonds, and is frequently used in organic chemistry. The initial reaction product is a /3-hydroxy aldehyde (aldol) or /3-hydroxy ketone (ketol) 3. A subsequent dehydration step can follow, to yield an o ,/3-unsaturated carbonyl compound 4. In that case the entire process is also called aldol condensation. [Pg.4]

G If one of the carbonyl partners is much more acidic than the other and so is transformed into its enolate ion in preference to the other, then a mixed aldol reaction is likely to be successful. Ethyl acetoacetate, for instance, is completely converted into its enolate ion in preference to enolate ion formation from monocarbonyl partners. Thus, aldol condensations of monoketones with ethyl acetoacetate occur preferentially to give the mixed product. [Pg.886]

The mixed Claisen condensation of two different esters is similar to the mixed aldol condensation of two different aldehydes or ketones (Section 23.5). Mixed Claisen reactions are successful only when one of the two ester components has no a hydrogens and thus can t form an enolate ion. For example, ethyl benzoate and ethyl formate can t form enolate ions and thus can t serve as donors. They can, however, act as the electrophilic acceptor components in reactions with other ester anions to give mixed /3-keto ester products. [Pg.890]

An important stereochemical issue presents itself here. A priori, an aldol condensation between intermediates 2 and 3 could result in the formation of a mixture of diastereomeric aldol adducts, epi-meric at C-7, with little or no preference for a particular stereoisomer. Cram s rule2,4 predicts the formation of aldol adduct 43. This intermediate possesses the correct absolute configuration at C-7, and it should be noted that Kishi et al. had demonstrated during the course of their monensin synthesis that a similar aldol condensation produced the desired C-7 epimer as the major product.12... [Pg.233]

When 2-lithio-2-(trimethylsilyl)-l,3-dithiane,9 formed by deprotonation of 9 with an alkyllithium base, is combined with iodide 8, the desired carbon-carbon bond forming reaction takes place smoothly and gives intermediate 7 in 70-80% yield (Scheme 2). Treatment of 7 with lithium diisopropylamide (LDA) results in the formation of a lactam enolate which is subsequently employed in an intermolecular aldol condensation with acetaldehyde (6). The union of intermediates 6 and 7 in this manner provides a 1 1 mixture of diastereomeric trans aldol adducts 16 and 17, epimeric at C-8, in 97 % total yield. Although stereochemical assignments could be made for both aldol isomers, the development of an alternative, more stereoselective route for the synthesis of the desired aldol adduct (16) was pursued. Thus, enolization of /Mactam 7 with LDA, as before, followed by acylation of the lactam enolate carbon atom with A-acetylimidazole, provides intermediate 18 in 82% yield. Alternatively, intermediate 18 could be prepared in 88% yield, through oxidation of the 1 1 mixture of diastereomeric aldol adducts 16 and 17 with trifluoroacetic anhydride (TFAA) in... [Pg.253]

The general features of this elegant and efficient synthesis are illustrated, in retrosynthetic format, in Scheme 4. Asteltoxin s structure presents several options for retrosynthetic simplification. Disassembly of asteltoxin in the manner illustrated in Scheme 4 furnishes intermediates 2-4. In the synthetic direction, attack on the aldehyde carbonyl in 2 by anion 3 (or its synthetic equivalent) would be expected to afford a secondary alcohol. After acid-catalyzed skeletal reorganization, the aldehydic function that terminates the doubly unsaturated side chain could then serve as the electrophile for an intermolecular aldol condensation with a-pyrone 4. Subsequent dehydration of the aldol adduct would then afford asteltoxin (1). [Pg.322]


See other pages where Aldol condensation formate is mentioned: [Pg.895]    [Pg.895]    [Pg.1030]    [Pg.895]    [Pg.895]    [Pg.895]    [Pg.1030]    [Pg.895]    [Pg.1014]    [Pg.247]    [Pg.483]    [Pg.28]    [Pg.67]    [Pg.122]    [Pg.84]    [Pg.87]    [Pg.436]    [Pg.177]    [Pg.457]    [Pg.112]    [Pg.233]    [Pg.234]    [Pg.241]    [Pg.251]    [Pg.319]    [Pg.328]    [Pg.330]    [Pg.331]    [Pg.431]    [Pg.454]    [Pg.454]   
See also in sourсe #XX -- [ Pg.201 , Pg.273 ]




SEARCH



Aldol condensate

Aldol condensation

Aldol condensation sugar formation mechanism

Condensations aldol condensation

Condensed format

© 2024 chempedia.info