Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aldehydes oxidative addition

Equations 2c and 2d show the acyl-alkyl migration and reductive elimination steps, respectively. There is good evidence that this same mechanistic scheme applies to the decarbonylation of aldehydes (see Equation set 2, X = H), although in this case reaction intermediates have not been isolated (3, 5, 9, 18). Additionally, evidence exists that the rate-determining step is oxidative addition for aldehyde decarbonylation (see Equation 2b, X = H) (3, 9, 18). Several recent reports have shown that for some special aldehydes, oxidative addition of the carbonyl-hydrogen bond indeed does occur using rhodium(I) complexes (8,19). In these studies a stable chelate was formed after oxidative addition that enabled isolation and characterization of the products (8, 19). [Pg.73]

Interesting formation of the fulvene 422 takes place by the reaction of the alkenyl bromide 421 with a disubstituted alkyne[288]. The indenone 425 is prepared by the reaction of o-iodobenzaldehyde (423) with internal alkyne. The intermediate 424 is formed by oxidative addition of the C—H bond of the aldehyde and its reductive elimination affords the enone 425(289,290]. [Pg.186]

Functional groups that stabilize radicals would be expected to increase susceptibility to autoxidation. This is illustrated by two cases that have been relatively well studied. Aldehydes, in which abstraction of the aldehyde hydrogen is fecile, are easily autoxidized. The autoxidation initially forms a peroxycarboxylic acid, but usually the corresponding carboxylic acid is isolated because the peroxy acid oxidizes additional aldehyde in a... [Pg.707]

Perfluoroalkyltin halides can be prepared via oxidative addition of perfluo-roalkyl iodides to tin(II) halides in dimethylformamide (DMF) [12] The per-fluoroalkyltin(IV) dihalide could not be isolated, but in DMF solution, the tin(lV) compound did react with aldehydes and ketones in the presence of pyndine [12] (equation 8) Typical perfluoroalkylcarbinols prepared by this method are shown in Table 1 [12]... [Pg.671]

Aldehyde oxidations occur through intermediate l/l-diols, or hydrates, which are formed by a reversible nucleophilic addition of water to the carbonyl group. Even though formed to only a small extent at equilibrium, the hydrate reacts like any typical primary or secondary alcohol and is oxidized to a carbonyl compound (Section 17.7). [Pg.701]

A plausible mechanism accounting for the catalytic role of nickel(n) chloride has been advanced (see Scheme 4).10 The process may be initiated by reduction of nickel(n) chloride to nickel(o) by two equivalents of chromium(n) chloride, followed by oxidative addition of the vinyl iodide (or related substrate) to give a vinyl nickel(n) reagent. The latter species may then undergo transmetala-tion with a chromium(m) salt leading to a vinyl chromium(m) reagent which then reacts with the aldehyde. The nickel(n) produced in the oxidative addition step reenters the catalytic cycle. [Pg.717]

Mechanisms of aldehyde oxidation are not firmly established, but there seem to be at least two main types—a free-radical mechanism and an ionic one. In the free-radical process, the aldehydic hydrogen is abstracted to leave an acyl radical, which obtains OH from the oxidizing agent. In the ionic process, the first step is addition of a species OZ to the carbonyl bond to give 16 in alkaline solution and 17 in acid or neutral solution. The aldehydic hydrogen of 16 or 17 is then lost as a proton to a base, while Z leaves with its electron pair. [Pg.917]

Rhodium(I) complexes are effective reagents and/or catalysts for the decarbonylation of acyl halides and aldehydes 9 11,34,195,230,231,236). The compound Rh(PPh3)3Cl, especially, has received considerable attention. The first step in such reactions involves oxidative addition to Rh(I) of the organic molecule, exemplified by the following ... [Pg.134]

Employing ketones or aldehydes as starting materials, the corresponding silylethers are obtained. Thereafter, the oxidation or hydrolysis of the obtained silylethers gives the corresponding alcohols (Scheme 17). In most cases, a hydride (silyl) metal complex H-M-Si (M = transition-metal), which is generated by an oxidative addition of H-Si bond to the low-valent metal center, is a key intermediate in the hydrosilylation reaction. [Pg.44]

The detailed decomposition (P-H ehminahon) mechanism of the hydrido(alkoxo) complexes, mer-crs-[lr(H)(OR)Cl(PR 3)3] (R = Me, Et, Pr R = Me, Et H trans to Cl) (56, 58, 60), forming the dihydrides mer-cis-[lr H)2Cl PR )2] (57, 59) along with the corresponding aldehyde or ketone was examined (Scheme 6-8). The hydrido(ethoxo) as well as the hydrido(isopropoxo) complexes 60 could also be prepared by oxidative addition of ethanol and isopropanol to the phosphine complexes 39 [44]. In the initial stage of the P-H elimination, a pre-equiUbrium is assumed in which an unsaturated pentacoordinated product is generated by an alcohol-assisted dissociation of the chloride. From this intermediate the transition state is reached, and the rate-determining step is an irreversible scission of the P-C-H bond. This process has a low... [Pg.183]

The catalytic process is also achieved in the Pd(0)/Cr(II)-mediated coupling of organic halides with aldehydes (Scheme 33) [74], Oxidative addition of a vinyl or aryl halide to a Pd(0) species, followed by transmetallation with a chromium salt and subsequent addition of the resulting organo chromate to an aldehyde, leads to the alcohol 54. The presence of an oxophile [Li(I) salts or MesSiCl] allows the cleavage of the Cr(III) - 0 bond to liberate Cr(III), which is reduced to active Cr(II) on the electrode surface. [Pg.83]

A rationale for the cz s-selective cyclization for the intramolecular homoal-lylation of oo-dienyl aldehyde 64 is illustrated in Scheme 16. The scenario is essentially the same as the one proposed for the intermolecular reaction, and a Ni(0) species undergoes oxidative addition upon the diene and the aldehyde moieties through a conformation placing the aldehyde substituent and the diene anti to each other. An intermediate 66 undergoes (>-II elimination and czs-reductive elimination of the thus-formed Ni - H complex to produce 65. [Pg.208]

The reaction proceeds at room temperature and is rationalized invoking oxidative addition of a Pd(0) species upon the allylic C - O bond of 67, followed by decarboxylation to form an oxapalladacyclopentane intermediate 66 (Pd in place of Ni), which undergoes a facile b-C elimination to finally give an co-dienyl aldehyde 68 (Scheme 17). Recently, it has been revealed that a combination of Ni(cod)2 and a phosphine ligand also catalyzes the same... [Pg.208]

The event, oxidative addition of a Ni(0) species upon dienes and aldehydes activated by coordination with Lewis acids to provide oxanickellacycles 45, has proven to take place quite generally, and many variations making the best use of the intermediate 45 have been developed. The key issue of the reactions discussed in Sect. 3 is a regioselective and stereoselective hydrogen delivery... [Pg.210]

Recent advancements involving oxanickellacycles as common intermediates, which are formed by oxidative addition of a Ni(0) species upon dienes and aldehydes, is also reviewed very briefly. [Pg.213]

There are few reports of oxidative addition to zerovalent transition metals under mild conditions three reports involving group 10 elements have appeared. Fischer and Burger reported the preparation of aTT -allylpalladium complex by the reaction of palladium sponge with allyl bromide(63). The Grignard-type addition of allyl halides to aldehydes has been carried out by reacting allylic halides with cobalt or nickel metal prepared by reduction of cobalt or nickel halides with manganese/iron alloy-thiourea(64). [Pg.231]

The development of the Grignard-type addition to carbonyl compounds mediated by transition metals would be of interest as the compatibility with a variety of functionality would be expected under the reaction conditions employed. One example has been reported on the addition of allyl halides to aldehydes in the presence of cobalt or nickel metal however, yields were low (up to 22%). Benzylic nickel halides prepared in situ by the oxidative addition of benzyl halides to metallic nickel were found to add to benzil and give the corresponding 3-hydroxyketones in high yields(46). The reaction appears to be quite general and will tolerate a wide range of functionality. [Pg.233]

An intermediate acylnickel halide is first formed by oxidative addition of acyl halides to zero-valent nickel. This intermediate can attack unsaturated ligands with subsequent proton attack from water. It can give rise to benzyl- or benzoin-type coupling products, partially decarbonylate to give ketones, or react with organic halides to give ketones as well. Protonation of certain complexes can give aldehydes. Nickel chloride also acts as catalyst for Friedel-Crafts-type reactions. [Pg.222]

Aldehydes do not co-oxidize alkanes due to a huge difference in the reactivity of these two classes of organic compounds. Alkanes are almost inert to oxidation at room temperature and can be treated as inert solvents toward oxidized aldehydes [35]. Olefins and alkylaromatic hydrocarbons are co-oxidized with aldehydes. The addition of alkylaromatic hydrocarbon (R2H) to benzaldehyde (R1H) retards the rate of the initiated oxidation [36-39]. The rate of co-oxidation obeys the equation [37] ... [Pg.330]

The familiar standard de carbonyl at ion mechanism ( 3, 5) involving a concerted oxidative-addition of aldehyde, CO migration (with subsequent elimination), and reductive-elimination of product, would seem with metalloporphyrins to require coordination numbers higher than six, and in this case Ru(IV) intermediates. Although this is plausible, the data overall strongly suggest a radical mechanism and Ru(III) intermediates. [Pg.248]

The most plausible mechanism proceeds through oxidative addition of the aldehyde to an active Ru(0) species to form (acyl)(hydrido)ruthenium(ll) complex 155. Insertion of the less-substituted double bond of the 1,3-diene into the Ru-H bond occurs to generate an (acyl)( 73-allyl)ruthenmm(ll) intermediate of type 156. Successive regioselective reductive eliminations between the acyl and the 73-allyl ligands provide the desired product with regeneration of the... [Pg.441]

In relation to palladium enolates, Yamamoto and co-workers reported palladium-catalyzed addition of malononi-trile derivatives to imines or aldehydes (Equation (110)).466,466a Oxidative addition of the C-H bond of the malononitrile to Pd(0) followed by insertion of an electrophile is proposed. [Pg.467]

It is postulated that the mechanism of the silane-mediated reaction involves silane oxidative addition to nickel(O) followed by diene hydrometallation to afford the nickel -jr-allyl complex A-16. Insertion of the appendant aldehyde provides the nickel alkoxide B-12, which upon oxygen-silicon reductive elimination affords the silyl protected product 71c along with nickel(O). Silane oxidative addition to nickel(O) closes the catalytic cycle. In contrast, the Bu 2Al(acac)-mediated reaction is believed to involve a pathway initiated by oxidative coupling of the diene and... [Pg.522]

Although detailed mechanistic studies are not reported, the postulated mechanism for the reductive cyclization of allenic carbonyl compounds involves entry into the catalytic cycle via silane oxidative addition. Allene silylrhodation then provides the cr-allylrhodium hydride A-18, which upon carbometallation of the appendant aldehyde gives rise to rhodium alkoxide B-14. Oxygen-hydrogen reductive elimination furnishes the hydrosilylation-cyclization product... [Pg.528]


See other pages where Aldehydes oxidative addition is mentioned: [Pg.355]    [Pg.355]    [Pg.6]    [Pg.524]    [Pg.687]    [Pg.1304]    [Pg.14]    [Pg.26]    [Pg.94]    [Pg.120]    [Pg.186]    [Pg.535]    [Pg.86]    [Pg.114]    [Pg.187]    [Pg.82]    [Pg.49]    [Pg.799]    [Pg.29]    [Pg.53]    [Pg.224]    [Pg.448]    [Pg.456]    [Pg.518]   
See also in sourсe #XX -- [ Pg.1193 ]




SEARCH



Addition aldehydes

Aldehyde oxidation-addition

Aldehyde oxidation-addition

Aldehydes oxidation

Aldehydes, addition derivatives oxidation

Oxidative addition of aldehydes

© 2024 chempedia.info