Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aldehydes from Swern oxidation

The protected methyl glycoside 3 is converted to the corresponding aldehyde by Swern oxidation using oxalyl chloride activated DMSO. Further reaction with triethyl phosphonoacetate and sodium hydride -known as the Horner-Wadsworth-Emmons reaction - provides selectively the trans et /Tun saturated ester 4 in 72 % yield. This valuable alternative to the Wittig olefination protocol uses phosphonate esters as substrates which are readily available from alkyl halides and trialkyl phosphites via the Arbuzov rearrangement.9 co2Et Reaction of the phosphonate with a suitable base gives the... [Pg.196]

The drug candidate 1 was prepared from chiral cyclopentanol 10 as shown in Scheme 7.3. Reaction of 10 with racemic imidate 17, prepared from the corresponding racemic benzylic alcohol, in the presence of catalytic TfOH furnished a 1 1 mixture of diastereomers 18 and 19 which were only separated from one another by careful and tedious chromatography. Reduction of ester 18 with LiBH4 and subsequent Swern oxidation gave aldehyde 20 in 68% yield. Reductive animation of 20 with (R)-ethyl nipecotate L-tartrate salt 21 and NaBH(OAc)3 and subsequent saponification of the ester moiety yielded drug candidate 1. [Pg.193]

Veeresa and Datta [58] used a Swern oxidation to generate an aldehyde from AT-Boc-protected phenylalaninol (85). The aldehyde was in situ attacked by allylmagnesium bromide (Scheme 23). [Pg.23]

Amino-1-fluoro-propylidence)-cyclopentanecarbonitriles (55), i//[CF=C] iso-stere of 2-cyanopyrrolidides, were prepared from 56, an intermediate in the synthesis of 50 (Scheme 19) [65]. A better route was conversion of the primary alcohol (58), another intermediate in the synthesis of 50, to the aldehyde (59) through Swern oxidation followed by treatment with hydroxylamine-O-sulfonicacid (Scheme 10). Both pairs of diastereomer u-55 and 1-55 exhibited inhibitory activity against DPP IV. u-55 and 1-55 also were very stable in buffer (pH 7.6) as assessed by UV-vis spectroscopy over the range of 190-1,100 nm at 30 and 50°C (Scheme 20). [Pg.714]

The oxidation of the primary alcohol leads to an aldehyde that is isolated as an aminal. Minor amounts of a methylthiomethyl ether are isolated, resulting from the reaction of the alcohol with CH2=S(+)-Me that is formed by thermal decomposition of activated DMSO. Interestingly, a Swern oxidation fails to deliver the desire product, because it causes the chlorination of the indole. [Pg.109]

Swern oxidations produce the quite unreactive side compounds carbon monoxide, carbon dioxide, dimethyl sulfide and an amine hydrochloride. Therefore, it is very often possible to perform the in situ addition of a nucleophile to the aldehyde or ketone, resulting from the oxidation. This is particularly useful when the aldehyde or ketone is difficult to isolate, because of possessing an unusually high reactivity. [Pg.157]

The activation of DMSO by electrophilic reagents such as oxallyl chloride or trifluoroacetic anhydride (TFAA) (among many others) produces an oxidant capable of oxidizing primary alcohols to aldehydes in high yields. This oxidation is called the Swern oxidation and yields the aldehyde (oxidized product) by reductive elimination of dimethylsulfide (reduced product) and proceeds under mild, slightly basic conditions. It is a second widely used and effective oxidative method for the production of aldehydes from primary alcohols. [Pg.193]

The unsubstituted hydrazones derived from aromatic ketones and aldehydes are converted to the corresponding alkyl chlorides, in high yield, under Swern oxidation conditions. In this unusual oxidation/reduction sequence, the substrate undergoes a net reduction. Unsubstituted hydrazones derived from cyclohexyl ketones yielded elimination products. The mechanism in Scheme 7 has been postulated.111... [Pg.104]

The Swern oxidation uses dimethyl sulfoxide (DMSO) as the oxidizing agent to convert alcohols to ketones and aldehydes. DMSO and oxalyl chloride are added to the alcohol at low temperature, followed by a hindered base such as triethylamine. The reactive species (CH3)2SC1, formed in the solution, is thought to act as the oxidant in the Swem oxidation. Secondary alcohols are oxidized to ketones, and primary alcohols are oxidized only as far as the aldehyde. The by-products of this reaction are all volatile and are easily separated from the organic products. [Pg.472]

In Chapter 24 we mentioned the Swern oxidation briefly as an excellent method of converting alcohols to aldehydes. We said there that we would discuss this interesting reaction later and now is the time. The mechanism is related to the reactions that we have been discussing and it is relevant that the Swern oxidation is particularly effective at forming enals from allylic alcohols, the Swern oxidation... [Pg.1271]

In our procedure methyl ester 3 is obtained by the McKillop method.2 Conditions and yields of steps A and B are essentially identical to those reported by McKillop. The reduction of crude 3 with lithium aluminum hydride (step C) to the alcohol 4 was essentially quantitative. Also this isolated compound did not require any purification for use in the next oxidation step (D). This was carried out by the Swern oxidation method12 using DMSO and (COCI)2 in the presence of a base. This crucial operation where Roush obtained considerable racemization of the resulting amino aldehyde 5, was carried out in the presence of diisopropylethylamine13 (Hunig s base). This simple yet important modification provided 5 in good yield (79-85% from 1) and enantiomeric purity (96-98%) comparable to that reported by Garner. [Pg.53]

Epoxidation of oxonine 93 with dimethyldioxirane, followed by reduction with diisobutylaluminium hydride (DIBAL-H), resulted in a separable mixture of alcohols 95 and 96, and the side product 94 (Scheme 16). Each of the isomers was submitted to Swern oxidation and sequential stereoselective reduction with L-selectride to achieve desired stereochemistry of the products 97 and 98. Formation of the side product 94 was explained by Lewis acidity of DIBAL-H and confirmed by treatment of oxirane derived from 93 with another Lewis acid, AlMe3, to produce oxocine aldehyde 99 in 35% isolated yield <1997CL665>. Similar oxidative synthetic sequence was utilized for the synthesis of functionalized oxonines as precursors of (-l-)-obtusenyne <1999JOG2616>. [Pg.569]

Silver salts are also utilized to perform nucleophilic additions to disulfide bonds to yield sulfenamides (146). If alkyl halides are treated with stoichiometric AgBF4 in dimethyl sulfoxide solvent (DMSO, solvent), the corresponding aldehydes/ ketones will form in good yields. This reaction is an alternative to the well-known Swern oxidation (147). In addition, silver can drive the formation of dialkylper-oxonium ions from alkyl halides, which then oxidizes sulfoxides or sulfides (148,149). In the presence of AgN03, sulfides can be oxidized into a-chloro sulfoxides by SO2CI2 (Fig. 36) (150). [Pg.34]

Poll and Sames [112] have converted L-serine into A -methylfucosamine (Scheme 13.63). The method relies on the diastereoselective addition of propenyllithium to the aldehyde derived from protected L-serine derivative 183, giving allylic alcohol 184. Catalytic osmylation of 184 gives a 6 1 mixture of anti,syn 185 and syn,syn-2iminotnols. Protection of the triol 185 as its triacetate, reductive methylation and desilylation provides 186. Successive Swern oxidation, methanolysis and benzhydryl group hydrogenation leads to A -methylfucosamine 187. [Pg.680]

One example is Swern oxidation, which uses oxalyl chloride and DMSO and is particularly suitable for the selective oxidation of alcohols to aldehydes or ketones. The disadvantages of this oxidation method are the need for low temperatures, the smell of the dimethyl sulfide formed and the possible oxidation of other heteroatoms. Dess-Martin periodinane (DMP, 5) or iodoxybenzoic acid (IBX, 6) are also common oxidizing agents. The main advantage of these two methods is the short reaction time at room temperature. However, typical problems are the low solubility of IBX and the formation of byproducts. In this context, Finney et al. have reported an interesting procedure avoiding these problems by a variation of the temperature IBX is sufficiently soluble in solvents such as ethyl acetate or dichloromethane at elevated temperatures, whereas it is insoluble in these solvents at room temperature. Because of this, the remaining IBX as well as the IBX-derived byproducts can be separated from the reaction mixture by simple filtration. These reisolated IBX byproducts can then be reoxidized and reused. [Pg.158]

The second step is a Swern oxidation providing aldehydes from alcohols. [Pg.248]

The following Swern oxidation is an inexpensive, mild and fast transformation. It provides aldehydes starting from primary alcohols in the absence of water, exclusively. Other mild oxidation methods for the formation of aldehydes are known Dess-Martin periodinane (DMP), o-iodoxybenzoic acid (IBX), chromium(III) reagents, tetramethylpiperidine 7V-oxide and sodium hypochlorite (TEMPO/NaOCl), tetrapropylammonium perruthenate and N-methylmorpholine 7V-oxide (TPAP/NMO), " and palladium(II)-catalyzed oxidations are reported. ... [Pg.249]

In chemical oxidation or reduction the redox reagent and the substrate often form a covalent or ionic bond, for example, an ester in chromic acid oxidation [8], a sulfonium methylide in the Swern oxidation [9], cyclic esters in the svn dihydroxylation with OSO4 [10], or in the selenium dioxide oxidation of ketones and aldehydes [11]. In electrochemical processes the substrate must diffuse from the bulk of the solution to the electrode and compete there with other components of the electrolyte by competitive adsorption for a position at the electrode surface [12]. The next step is then generation of the reactive intermediate by electron transfer at the electrode that reacts with a low activation energy to the products. In chemical oxidations or reductions one finds a reductive or oxidative elimination of the intermediate with a higher activation energy. [Pg.208]

Its most elementary realisation is the reaction of a vinyl Grignard reagent 52 or vinyl lithium, usually prepared from a vinyl chloride 51 in THF, with an aldehyde followed by oxidation to the enone 48. The Swern oxidation is particularly useful for the oxidation of allylic alcohols such as 53 to enones. [Pg.62]


See other pages where Aldehydes from Swern oxidation is mentioned: [Pg.196]    [Pg.325]    [Pg.496]    [Pg.550]    [Pg.542]    [Pg.570]    [Pg.27]    [Pg.18]    [Pg.51]    [Pg.57]    [Pg.74]    [Pg.321]    [Pg.249]    [Pg.354]    [Pg.325]    [Pg.209]    [Pg.176]    [Pg.273]    [Pg.298]    [Pg.283]    [Pg.284]    [Pg.354]    [Pg.185]    [Pg.1924]    [Pg.1926]    [Pg.1927]    [Pg.16]    [Pg.221]   
See also in sourсe #XX -- [ Pg.193 ]




SEARCH



Aldehydes oxidation

Oxidations Swern oxidation

Swern

© 2024 chempedia.info