Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aldehydes enolate anions

The mechanism for this reaction is shown in Figure 20.3. For this mechanism to occur, both the enolate anion derived from the aldehyde and the un-ionized aldehyde must be present. To ensure that this is the case, hydroxide ion is most commonly used as the base. Because hydroxide ion is a weaker base than the aldehyde enolate anion, only a small amount of the enolate anion is produced. Most of the aldehyde remains... [Pg.873]

Flydrazone anions are more reactive than the corresponding ketone or aldehyde enolate. [Pg.79]

The anion B is just the enolate anion of a carbonyl compound, actually the same as A. So there is no need to use a Grignard reagent or any other synthetic equivalent in this reaction anion B itself can be the intermediate and we simply treat the aldehyde with mild base ... [Pg.27]

Silyl enol ethers are other ketone or aldehyde enolate equivalents and react with allyl carbonate to give allyl ketones or aldehydes 13,300. The transme-tallation of the 7r-allylpalladium methoxide, formed from allyl alkyl carbonate, with the silyl enol ether 464 forms the palladium enolate 465, which undergoes reductive elimination to afford the allyl ketone or aldehyde 466. For this reaction, neither fluoride anion nor a Lewis acid is necessary for the activation of silyl enol ethers. The reaction also proceed.s with metallic Pd supported on silica by a special method[301j. The ketene silyl acetal 467 derived from esters or lactones also reacts with allyl carbonates, affording allylated esters or lactones by using dppe as a ligand[302]... [Pg.352]

A number of novel reactions involving the a carbon atom of aldehydes and ketones involve enol and enolate anion intermediates... [Pg.768]

As noted earlier an aldehyde possessing at least one a hydrogen is partially converted to Its enolate anion by bases such as hydroxide ion and alkoxide 10ns... [Pg.769]

An a hydrogen of an aide hyde or a ketone is more acidic than most other protons bound to carbon Aldehydes and ketones are weak acids with pK s in the 16 to 20 range Their enhanced acidity IS due to the electron withdrawing effect of the carbon yl group and the resonance stabi lization of the enolate anion... [Pg.782]

Inductive and resonance stabilization of carbanions derived by proton abstraction from alkyl substituents a to the ring nitrogen in pyrazines and quinoxalines confers a degree of stability on these species comparable with that observed with enolate anions. The resultant carbanions undergo typical condensation reactions with a variety of electrophilic reagents such as aldehydes, ketones, nitriles, diazonium salts, etc., which makes them of considerable preparative importance. [Pg.166]

Because enolate anions ffle sources of nucleophilic car bon, one potential use in organic synthesis is their- reaction with alkyl halides to give a-alkyl derivatives of aldehydes and ketones ... [Pg.781]

OL Alkylation of aldehydes and ketones (Section 18.15) Alkylation of simple aldehydes and ketones via their enolates is difficult. p-Diketones can be converted quantitatively to their enolate anions, which react efficiently with primary alkyl halides. [Pg.784]

Thus the reactions of cyclic or acyclic enamines with acrylic esters or acrylonitrile can be directed to the exclusive formation of monoalkylated ketones (3,294-301). The corresponding enolate anion alkylations lead preferentially to di- or higher-alkylation products. However, by proper choice of reaction conditions, enamines can also be used for the preferential formation of higher alkylation products, if these are desired. Such reactions are valuable in the a substitution of aldehydes, which undergo self-condensation in base-catalyzed reactions (117,118). Monoalkylation products are favored in nonhydroxylic solvents such as benzene or dioxane, whereas dialkylation products can be obtained in hydroxylic solvents such as methanol. The difference in products can be ascribed to the differing fates of an initially formed zwitterionic intermediate. Collapse to a cyclobutane takes place in a nonprotonic solvent, whereas protonation on the newly introduced substitutent and deprotonation of the imonium salt, in alcohol, leads to a new enamine available for further substitution. [Pg.359]

The next step is the nucleophilic addition of the enolate anion 5 to the carbonyl group of another, non-enolized, aldehyde molecule 2. The product which is obtained after workup is a /3-hydroxy aldehyde or ketone 3 ... [Pg.4]

The stereochemical outcome of the addition of lithium enolates of aldehydes and ketones to nitroalkenes is dependent upon the geometry of the nitroalkene and the enolate anion. The synjanti selectivity in the reaction of the lithium enolates of propanal, eyelopentanone and cyclohexanone with ( )- and (Z)-l-nitropropene has been reported1. [Pg.1011]

In the presence of a strong base, the ot carbon of a carboxylic ester can condense with the carbonyl carbon of an aldehyde or ketone to give a P-hydroxy ester, which may or may not be dehydrated to the a,P-unsaturated ester. This reaction is sometimes called the Claisen reaction,an unfortunate usage since that name is more firmly connected to 10-118. In a modem example of how the reaction is used, addition of tert-butyl acetate to LDA in hexane at -78°C gives the lithium salt of ferf-butyl acetate, " (12-21) an enolate anion. Subsequent reaction a ketone provides a simple rapid alternative to the Reformatsky reaction (16-31) as a means of preparing P-hydroxy erf-butyl esters. It is also possible for the a carbon of an aldehyde or ketone to add to the carbonyl carbon of a carboxylic ester, but this is a different reaction (10-119) involving nucleophilic substitution and not addition to a C=0 bond. It can, however, be a side reaction if the aldehyde or ketone has an a hydrogen. [Pg.1224]

Besides ordinary esters (containing an a hydrogen), the reaction can also be carried out with lactones and, as in 16-38, with the y position of a,p-unsaturated esters (vinylogy). There are also cases, where the enolate anion of an amide was condensed with an aldehyde. ... [Pg.1224]

Among the compounds capable of forming enolates, the alkylation of ketones has been most widely studied and applied synthetically. Similar reactions of esters, amides, and nitriles have also been developed. Alkylation of aldehyde enolates is not very common. One reason is that aldehydes are rapidly converted to aldol addition products by base. (See Chapter 2 for a discussion of this reaction.) Only when the enolate can be rapidly and quantitatively formed is aldol formation avoided. Success has been reported using potassium amide in liquid ammonia67 and potassium hydride in tetrahydrofuran.68 Alkylation via enamines or enamine anions provides a more general method for alkylation of aldehydes. These reactions are discussed in Section 1.3. [Pg.31]

Aldehydes and ketones nndergo acid- and base-catalysed halogenation in the a position. This is also dependent on enolization or the formation of enolate anions. [Pg.356]

The Mannich reaction is best discussed via an example. A mixture of dimethylamine, formaldehyde and acetone under mild acidic conditions gives N,N-dimethyl-4-aminobutan-2-one. This is a two-stage process, beginning with the formation of an iminium cation from the amine and the more reactive of the two carbonyl compounds, in this case the aldehyde. This iminium cation then acts as the electrophile for addition of the nucleophile acetone. Now it would be nice if we could use the enolate anion as the nucleophile, as in the other reactions we have looked at, but under the mild acidic conditions we cannot have an anion, and the nucleophile must be portrayed as the enol tautomer of acetone. The addition is then unspectacular, and, after loss of a proton from the carbonyl, we are left with the product. [Pg.369]

The a-hydrogens of carboxylic acid derivatives show enhanced acidity, as do those of aldehydes and ketones, and for the same reasons, that the carbonyl group stabilizes the conjugate base. Thus, we can generate enolate anions from carboxylic acid derivatives and use these as nucleophiles in much the same way as we have already seen with enolate anions from aldehydes and ketones. [Pg.372]

Unfortunately, there are some limitations in the carboxylic acid group of compounds, and the derivatives most often used to form enolate anions are esters. However, esters are less acidic than the corresponding aldehydes or ketones (Table 10.2). [Pg.372]

Whereas the pATa for the a-protons of aldehydes and ketones is in the region 17-19, for esters such as ethyl acetate it is about 25. This difference must relate to the presence of the second oxygen in the ester, since resonance stabilization in the enolate anion should be the same. To explain this difference, overlap of the non-carbonyl oxygen lone pair is invoked. Because this introduces charge separation, it is a form of resonance stabilization that can occur only in the neutral ester, not in the enolate anion. It thus stabilizes the neutral ester, reduces carbonyl character, and there is less tendency to lose a proton from the a-carbon to produce the enolate. Note that this is not a new concept we used the same reasoning to explain why amides were not basic like amines (see Section 4.5.4). [Pg.373]

An enolate anion generated from a carboxylic acid derivative may be used in the same sorts of nucleophilic reactions that we have seen with aldehyde and ketone systems. It should be noted, however, that the base used to generate the enolate anion must be chosen carefully. If sodium hydroxide were used, then hydrolysis of the carboxylic derivative to the acid (see Section 7.9.2) would compete with enolate anion formation. However, the problem is avoided by using the same base, e.g. ethoxide, as is present in the ester... [Pg.374]

Should the a-position be a chiral centre containing hydrogen, it is possible to racemize at that centre (compare Section 10.1.1). Again, racemization is less likely to occur with esters than with aldehydes and ketones, and ready racemization may require the contribution of other favourable factors in the enolate anion (see Box 10.9). [Pg.374]

Nucleophilic addition of an enolate anion from a carboxylic acid derivative onto an aldehyde or ketone is simply an aldol-type reaction (see Section 10.3). [Pg.379]


See other pages where Aldehydes enolate anions is mentioned: [Pg.788]    [Pg.725]    [Pg.788]    [Pg.725]    [Pg.784]    [Pg.314]    [Pg.148]    [Pg.150]    [Pg.236]    [Pg.73]    [Pg.949]    [Pg.83]    [Pg.159]    [Pg.360]   
See also in sourсe #XX -- [ Pg.530 ]




SEARCH



Aldehyde enolate

Aldehyde enols

Aldehydes enolate anions, reaction with

Aldehydes enolates

Aldehydes enolization

Aldehydes, reaction with amide enolate anions

Enolate anions

Enolate anions from aldehydes

Enolate anions, esters, reaction with aldehydes

Enolate anions, malonic acid, reaction with aldehydes

Enolate anions, nitro compounds, reaction with aldehydes

Enolates anion

Enolates anionic

© 2024 chempedia.info