Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enantioselective synthesis aldehydes

Terrasson, V, van der Lee, A., de Figueiredo, R. M., Campagne, J.-M. (2010). Organocatalyzed cyclopropanation of alpha-substituted alpha.beta-unsaturated aldehydes enantioselective synthesis of cyclopropanes bearing a chiral quaternary center. Chemistry - A European Journal, 16,7875-7880. [Pg.148]

The first synthesis of the potent antitumor agent maytansine was carried out by the elaboration of aldehyde D, an intermediate in the enantioselective synthesis of (-)-A/-methylmaysenine (Ref. 1,2), using enantioselective and diastereoselective steps. [Pg.122]

A series of chiral binaphthyl ligands in combination with AlMe3 has been used for the cycloaddition reaction of enamide aldehydes with Danishefsky s diene for the enantioselective synthesis of a chiral amino dihydroxy molecule [15]. The cycloaddition reaction, which was found to proceed via a Mukaiyama aldol condensation followed by a cyclization, gives the cycloaddition product in up to 60% yield and 78% ee. [Pg.159]

Since the addition of dialkylzinc reagents to aldehydes can be performed enantioselectively in the presence of a chiral amino alcohol catalyst, such as (-)-(1S,2/ )-Ar,A -dibutylnorephedrine (see Section 1.3.1.7.1.), this reaction is suitable for the kinetic resolution of racemic aldehydes127 and/or the enantioselective synthesis of optically active alcohols with two stereogenic centers starting from racemic aldehydes128 129. Thus, addition of diethylzinc to racemic 2-phenylpropanal in the presence of (-)-(lS,2/ )-Ar,W-dibutylnorephedrine gave a 75 25 mixture of the diastereomeric alcohols syn-4 and anti-4 with 65% ee and 93% ee, respectively, and 60% total yield. In the case of the syn-diastereomer, the (2.S, 3S)-enantiomer predominated, whereas with the twtf-diastereomer, the (2f ,3S)-enantiomer was formed preferentially. [Pg.23]

Allylmetal reagents which hear alkyl or aryl groups at both termini are stereogenic and usually add aldehydes w ith a high degree of reagent-induced stereoselectivity (Section D.3.3.1.5.1.). Some of these reagents have been prepared in enantiomerically enriched form and used in enantioselective synthesis. Table 4 collects some representative examples. [Pg.223]

Starting wdth aldehyde 20 and 2-alkoxyfurans an enantioselective synthesis of bioactive melodorinol and acetylmelodorinol was achieved <96TA3141>. [Pg.123]

In 2002, Braga el al. employed a chiral C2-symmetric oxazolidine disulfide as a ligand for the enantioselective synthesis of propargylic alcohols by direct addition of alkynes to aldehydes (Scheme 3.64). Good yields but moderate enantioselectivities (<58% ee) were obtained for the enantioselective alkyny-lation of aldehydes in the presence of ZnEt2. [Pg.144]

Propose an enantioselective synthesis of (+) methyl nonactate from the aldehyde shown. [Pg.365]

The enantioselective synthesis in Scheme 13.22 is based on stereoselective reduction of an a, (3-unsaturated aldehyde generated from (—)-(.V)-limonene (Step A). The reduction was done by Baker s yeast and was completely enantioselective. The diastereoselectivity was not complete, generating an 80 20 mixture, but the diastere-omeric alcohols were purified at this stage. After oxidation to the aldehyde, the remainder of the side chain was introduced by a Grignard addition. The ester function... [Pg.1185]

The syntheses in Schemes 13.45 and 13.46 illustrate the use of oxazolidinone chiral auxiliaries in enantioselective synthesis. Step A in Scheme 13.45 established the configuration at the carbon that becomes C(4) in the product. This is an enolate alkylation in which the steric effect of the oxazolidinone chiral auxiliary directs the approach of the alkylating group. Step C also used the oxazolidinone structure. In this case, the enol borinate is formed and condensed with an aldehyde intermediate. This stereoselective aldol addition established the configuration at C(2) and C(3). The configuration at the final stereocenter at C(6) was established by the hydroboration in Step D. The selectivity for the desired stereoisomer was 85 15. Stereoselectivity in the same sense has been observed for a number of other 2-methylalkenes in which the remainder of the alkene constitutes a relatively bulky group.28 A TS such as 45-A can rationalize this result. [Pg.1205]

In a recently published report by MacMillan s group [121] on the enantioselective synthesis of pyrroloindoline and furanoindoline natural products such as (-)-flustramine B 2-219 [122], enantiopure amines 2-215 were used as organocatalysts to promote a domino Michael addition/cyclization sequence (Scheme 2.51). As substrates, the substituted tryptamine 2-214 and a, 3-unsaturated aldehydes were used. Reaction of 2-214 and acrolein in the presence of 2-215 probably leads to the intermediate 2-216, which cyclizes to give the pyrroloindole moiety 2-217 with subsequent hydrolysis of the enamine moiety and reconstitution of the imidazolid-inone catalyst. After reduction of the aldehyde functionality in 2-217 with NaBH4 the flustramine precursor 2-218 was isolated in very good 90 % ee and 78 % yield. [Pg.80]

An enantioselective synthesis of (—)-lupinine 6 was based on a similar reductive amination process. In this case, (k)-phcnylglycinol was used to obtain a chiral nonracemic oxazololactam which was cyclized after reduction of N-C and O-C bonds and subsequent hydrolysis of the masked aldehyde <2004T5433>. [Pg.29]

Sulfur ylides are a classic reagent for the conversion of carbonyl compounds to epoxides. Chiral camphor-derived sulfur ylides have been used in the enantioselective synthesis of epoxy-amides <06JA2105>. Reaction of sulfonium salt 12 with an aldehyde and base provides the epoxide 13 in generally excellent yields. While the yield of the reaction was quite good across a variety of R groups, the enantioselectivity was variable. For example benzaldehyde provides 13 (R = Ph) in 97% ee while isobutyraldehyde provides 13 (R = i-Pr) with only 10% ee. These epoxy amides could be converted to a number of epoxide-opened... [Pg.73]

The enantioenriched sulfoxide intermediate 72 (R = CH2OH), obtained by asymmetric 5-oxidation with a chiral oxaziridine (89 11 enantiomeric ratio), has provided a highly enantioselective synthesis of the benzothiepin derivative 71 (4R, 5R). The aldehyde intermediate 72 (R = CHO) was cyclized asymmetrically to 71 (4R, 5R) with >98 2 enantiomeric ratio. Base treatment (f-BuOK, -10°C, THF) of the racemic benzothiepin 73... [Pg.354]

Yamagishi, T., Yokonatsu, T., Suemune, K., and Shibuya, S., Enantioselective synthesis of a-hydroxyphosphinic acid derivatives through hydrophosphi-nylation of aldehydes catalyzed by Al-Li-BINOL complex, Tetrahedron, 52, 11725, 1996. [Pg.108]

Enantioselective synthesis of R R2CHNH2.1 Alkyllithiums add stereoselec-tively to the C=N bond of SAMP hydrazones (2) of aldehydes. Reductive cleavage of the N—N bond of the products (3) affords either (R)- or (S)-4 with recovery of... [Pg.22]

Perlmutter used an oxymercuration/demercuration of a y-hydroxy alkene as the key transformation in an enantioselective synthesis of the C(8 ) epimeric smaller fragment of lb (and many more pamamycin homologs cf. Fig. 1) [36]. Preparation of substrate 164 for the crucial cyclization event commenced with silylation and reduction of hydroxy ester 158 (85-89% ee) [37] to give aldehyde 159, which was converted to alkenal 162 by (Z)-selective olefination with ylide 160 (dr=89 l 1) and another diisobutylaluminum hydride reduction (Scheme 22). An Oppolzer aldol reaction with boron enolate 163 then provided 164 as the major product. Upon successive treatment of 164 with mercury(II) acetate and sodium chloride, organomercurial compound 165 and a second minor diastereomer (dr=6 l) were formed, which could be easily separated. Reductive demercuration, hydrolytic cleavage of the chiral auxiliary, methyl ester formation, and desilylation eventually led to 166, the C(8 ) epimer of the... [Pg.233]

For an enantioselective synthesis of vinblastine (1) [or of leurosidine (56) and vincovaline (184, Scheme 49)], chirality at C-20 was introduced at the outset through Sharpless (131) oxidations of 2-ethylpropenol (185). Subsequent elaboration to the substituted five-carbon aldehydes 186... [Pg.121]

The cyclopropane aldehyde 156 was identified as a versatile chiral building block for the enantioselective synthesis of 4,5 disubstituted y-butyrolactones of type 158 or 159. Both enantiomers of 156 can be easily obtained in a highly diastereo- and enantioselective manner from fixran-2-carboxylic ester 154 using an asymmetric copper-catalyzed cyclopropanation as the key step followed by an ozonolysis of the remaining double bond (Scheme 25) [63]. Addition of... [Pg.65]

The proline-mediated intramolecular aldol condensation of dialdehyde substrates was also reported by List in 2003, affording enantioselective synthesis of cyclic p-hydroxy aldehydes via a 6-e ofexo-aldolization reaction (Scheme 11.7d). [Pg.327]

In a related process, Johnson and co-workers have developed an asymmetric metallophosphite-catalyzed intermolecular Stetter-hke reaction employing acyl silanes [81, 82], Acyl silanes are effective aldehyde surrogates which are capable of forming an acyl anion equivalent after a [l,2]-Brook rearrangement. The authors have taken advantage of this concept to induce the catalytic enantioselective synthesis of 1,4-dicarbonyls 118 in 89-97% ee and good chemical yields for a,p-unsaturated amides (Table 11). Enantioselectivities may be enhanced by recrystallization. [Pg.102]

Acid hydrolysis of tetrahydrooxazines 407 is well known and widely used for the synthesis of amino alcohols 408 or for the enantioselective synthesis of aldehydes 409, which can be transformed to carboxylic acids by mild oxidation [78AHC(23)1 87JCS(P1)515, 87T4979 90JOC2114]. [Pg.450]

Ammonia lyases catalyze the enantioselective addition of ammonia to an activated double bond. A one-pot, three-step protocol was developed for the enantioselective synthesis of L-arylalanines 50 using phenylalanine ammonia lyase (PAL) in the key step (Scheme 2.20). After formation of the unsaturated esters 48 in situ via a Wittig reaction from the corresponding aldehydes, addition of porcine Ever esterase and basification of the reaction mixture resulted in hydrolysis to the carboxylic acids 49. Once this reaction had gone to completion, introduction of PAL and further addition of ammonia generated the amino acids 50 in good yield and excellent optical purity [22]. [Pg.31]

A straightforward enantioselective synthesis of aZ/o-difluorothreonine is based on a three component Petasis reaction (enantiopure difluorolactic aldehyde. [Pg.158]

Special cases arc the enantioselective synthesis of chiral aldehydes using 1-phenyl-l-ethanamine under optimized conditions (see Table 5), and the remarkable asymmetric induction observed in the alkylation of polymer-bound imines at room temperature (see Table 2). [Pg.988]

Enantioselective synthesis of /3-amino alcohols by Sml2-mediated cross-pinacol coupling of the planar chiral iV-sulfonyl(ferrocenylidene)amine with ferrocene carboxaldehyde is achieved by facile reduction of the ferrocenyli-dene amine with Sml2, followed by enantioselective addition to the aldehyde (Equation (75)). ... [Pg.68]


See other pages where Enantioselective synthesis aldehydes is mentioned: [Pg.324]    [Pg.439]    [Pg.171]    [Pg.1296]    [Pg.667]    [Pg.110]    [Pg.142]    [Pg.110]    [Pg.97]    [Pg.102]    [Pg.255]    [Pg.109]    [Pg.152]    [Pg.164]    [Pg.165]    [Pg.700]    [Pg.528]    [Pg.236]    [Pg.97]    [Pg.323]    [Pg.146]    [Pg.14]   
See also in sourсe #XX -- [ Pg.35 ]




SEARCH



Alcohols enantioselective synthesis, from aldehyd

Aldehydes enantioselective

Enantioselective synthesis reactions, aldehydes

Enantioselectivity aldehydes

Synthesis enantioselective

© 2024 chempedia.info