Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aldehydes chromic acid

Obtaining the aldehyde is often difficult, since most oxidizing agents strong enough to oxidize primary alcohols also oxidize aldehydes. Chromic acid generally oxidizes a primary alcohol all the way to the carboxylic acid. [Pg.471]

Chromic acid (H2Cr04) is a good oxidizing agent and is formed when solutions containing chromate (Cr04 ) or dichromate (Cr207 ) are acidified Sometimes it is possible to obtain aldehydes m satisfactory yield before they are further oxidized but m most cases carboxylic acids are the major products isolated on treatment of primary alco hols with chromic acid... [Pg.641]

Oxidation of primary alcohols (Section 15 10) Potassi um permanganate and chromic acid convert primary al cohols to carboxylic acids by way of the corresponding aldehyde... [Pg.807]

Oxidation of aldehydes (Section 17 15) Aldehydes are particularly sensitive to oxidation and are converted to carboxylic acids by a number of oxidizing agents in eluding potassium permanganate and chromic acid... [Pg.807]

Acetaldehyde [75-07-0] (ethanal), CH CHO, was first prepared by Scheele ia 1774, by the action of manganese dioxide [1313-13-9] and sulfuric acid [7664-93-9] on ethanol [64-17-5]. The stmcture of acetaldehyde was estabhshed in 1835 by Liebig from a pure sample prepared by oxidising ethyl alcohol with chromic acid. Liebig named the compound "aldehyde" from the Latin words translated as al(cohol) dehyd(rogenated). The formation of acetaldehyde by the addition of water [7732-18-5] to acetylene [74-86-2] was observed by Kutscherow] in 1881. [Pg.48]

Usually, organoboranes are sensitive to oxygen. Simple trialkylboranes are spontaneously flammable in contact with air. Nevertheless, under carefully controlled conditions the reaction of organoboranes with oxygen can be used for the preparation of alcohols or alkyl hydroperoxides (228,229). Aldehydes are produced by oxidation of primary alkylboranes with pyridinium chi orochrom ate (188). Chromic acid at pH < 3 transforms secondary alkyl and cycloalkylboranes into ketones pyridinium chi orochrom ate can also be used (230,231). A convenient procedure for the direct conversion of terminal alkenes into carboxyUc acids employs hydroboration with dibromoborane—dimethyl sulfide and oxidation of the intermediate alkyldibromoborane with chromium trioxide in 90% aqueous acetic acid (232,233). [Pg.315]

Physical and Chemical Properties. The (F)- and (Z)-isomers of cinnamaldehyde are both known. (F)-Cinnamaldehyde [14371-10-9] is generally produced commercially and its properties are given in Table 2. Cinnamaldehyde undergoes reactions that are typical of an a,P-unsaturated aromatic aldehyde. Slow oxidation to cinnamic acid is observed upon exposure to air. This process can be accelerated in the presence of transition-metal catalysts such as cobalt acetate (28). Under more vigorous conditions with either nitric or chromic acid, cleavage at the double bond occurs to afford benzoic acid. Epoxidation of cinnamaldehyde via a conjugate addition mechanism is observed upon treatment with a salt of /-butyl hydroperoxide (29). [Pg.174]

This phenomenon has been ascribed to low solubility of the aldehyde or its chromic acid adduct in the reaction medium. Work up and reoxidation usually leads to the acid footnote... [Pg.272]

The mechanisms by which transition-metal oxidizing agents convert alcohols to aldehydes and ketones are complicated with respect to their inorganic chemistry. The organic chemistry is clearer and one possible mechanism is outlined in Figure 15.4. The key intennediate is an alkyl chromate, an ester of an alcohol and chromic acid. [Pg.643]

The identification of geraniol can be confirmed by its conversion into citral, Cj Hj O, its aldehyde, which has a very characteristic odour and yields well-defined crystalline derivatives. Five parts of the alcohol fraction are shaken with 2-5 parts of chromic acid and four parts of concentrated sulphuric acid dissolved in 100 parts of water. The mixture is warmed in the water-bath for a few minutes, when crude citral separates on the surface of the liquid. This is purified by steam distillation and conversion into its sulphonic acid compound in the... [Pg.109]

Oxidation of farnesol with chromic acid mixture gives rise to the aldehyde farnesal, which has the following characters —... [Pg.124]

The reactions which take place when the mixed etch primer is applied to a metal are complex. Part of the phosphoric acid reacts with the zinc tetroxychromate pigment to form chromic acid, zinc phospliates and zinc chromates of lower basicity. The phosphoric acid also attacks the metal surface and forms on it a thin chromate-sealed phosphate film. Chromic acid is reduced by the alcohols in the presence of phosphoric acid to form chromium phosphate and aldehydes. It is believed that part of the chromium phosphate then reacts with the resin to form an insoluble complex. Excess zinc tetroxy chromate, and perhaps some more soluble less basic zinc chromes, remain to function as normal chromate pigments, i.e. to impart chromate to water penetrating the film during exposure. Although the primer film is hard... [Pg.730]

Mild chromic acid oxidation of luciferin (CrOs/KHSC /HiO, room temperature) yielded 3-methyl-4-vinylmaleimide (1, Fig. 8.7), 3-methyl-4-ethylmaleimide (2), and an aldehyde (3), whereas vigorous chromic acid oxidation (CrOs/2N H2SO4, 90°C) gave hema-tinic acid (4) (Dunlap et al., 1981). These results closely resemble the results of the chromic acid oxidation of the fluorescent compound F of euphausiid (p. 76), indicating a structural similarity between dinoflagellate luciferin and the compound F. [Pg.260]

It was found by Chatterji and Mukherjee that the rate law for the oxidation of formaldehyde indicated that the chromic acid was esterified by the aldehyde hydrate formed, although they did not succeed in isolating the ester.The hypothesis of ester formation seems to be supported by the experience that the rate of reaction is increased by addition of pyridine. [Pg.530]

Entries 5 to 7 are examples of oxidation of boranes to the carbonyl level. In Entry 5, chromic acid was used to obtain a ketone. Entry 6 shows 5 mol % tetrapropylam-monium perruthenate with Af-methylmorpholine-lV-oxide as the stoichiometric oxidant converting the borane directly to a ketone. Aldehydes were obtained from terminal alkenes using this reagent combination. Pyridinium chlorochromate (Entry 7) can also be used to obtain aldehydes. Entries 8 and 9 illustrate methods for amination of alkenes via boranes. Entries 10 and 11 illustrate the preparation of halides. [Pg.347]

Various experimental conditions have been used for oxidations of alcohols by Cr(VI) on a laboratory scale, and several examples are shown in Scheme 12.1. Entry 1 is an example of oxidation of a primary alcohol to an aldehyde. The propanal is distilled from the reaction mixture as oxidation proceeds, which minimizes overoxidation. For secondary alcohols, oxidation can be done by addition of an acidic aqueous solution containing chromic acid (known as Jones reagent) to an acetone solution of the alcohol. Oxidation normally occurs rapidly, and overoxidation is minimal. In acetone solution, the reduced chromium salts precipitate and the reaction solution can be decanted. Entries 2 to 4 in Scheme 12.1 are examples of this method. [Pg.1065]

Chromic acid adsorbed on silica gel (Cr03 Si02 = 3 10) is a mild and safe reagent to oxidise saturated or unsaturated alcohols in carbon tetrachloride to the corresponding aldehydes. [Pg.1478]

Synthesis of aldehydes from alcohols is an important transformation in several applications. In small scale oxidations still chromic acid is being used as a stoichiometric oxidant of alcohols, which leads to a large amount of toxic waste and it is also expensive. Catalytic routes have been reported using palladium catalyst [18], or TEMPO (see also Figure 15.13) as a radical catalyst for the oxidation of alcohols [19], or combinations of TEMPO and copper [20] related work is mentioned in the references of these articles. The mechanism of... [Pg.331]

I n contrast to the relative simplicity of the chromyl chloride oxidation of 2,2-disubstituted-l-alkenes to aldehydes, the rlimmyl acetate and chromic acid oxidations generally lead to epoxides, acids, and carbon-carbon double bond cleavage. For example, chromyl acetate oxidizes 4,4-dimethyl-2-neopentyl-I pentene primarily to l,2-epoxy-4,4-dimethyl-2-neopentyl-pentane in low yield,9 and chromic acid oxidizes the alkene principally to 4,4-dimethyl-2-neopentylpentanoic acid.6,10... [Pg.88]

Aldehydes are further oxidized to carboxylic acids, RCOOH. To get aldehydes, milder reagents, such as the Jones (diluted chromic acid in acetone) or Collins reagent (a complex of CrOj with 2 mol of pyridine), are used. [Pg.277]


See other pages where Aldehydes chromic acid is mentioned: [Pg.325]    [Pg.325]    [Pg.32]    [Pg.32]    [Pg.53]    [Pg.89]    [Pg.505]    [Pg.230]    [Pg.272]    [Pg.298]    [Pg.313]    [Pg.325]    [Pg.269]    [Pg.76]    [Pg.917]    [Pg.918]    [Pg.1014]    [Pg.1514]    [Pg.185]    [Pg.219]    [Pg.218]    [Pg.4]    [Pg.12]    [Pg.10]    [Pg.97]   
See also in sourсe #XX -- [ Pg.242 ]




SEARCH



Aldehydes acidity

Chromic

Chromic Acid

Chromicity

© 2024 chempedia.info