Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aldehyde enolate ions

As m the acid catalyzed halogenation of aldehydes and ketones the reaction rate is mde pendent of the concentration of the halogen chlorination brommation and lodmation all occur at the same rate Formation of the enolate is rate determining and once formed the enolate ion reacts rapidly with the halogen... [Pg.765]

Aldehyde Enolate Alkoxide ion from nucleophilic addition... [Pg.770]

In practice this reaction is difficult to carry out with simple aldehydes and ketones because aldol condensation competes with alkylation Furthermore it is not always possi ble to limit the reaction to the introduction of a single alkyl group The most successful alkylation procedures use p diketones as starting materials Because they are relatively acidic p diketones can be converted quantitatively to their enolate ions by weak bases and do not self condense Ideally the alkyl halide should be a methyl or primary alkyl halide... [Pg.781]

Reactions of Aldehydes and Ketones That Involve Enol or Enolate Ion Intermediates... [Pg.782]

A reaction of great synthetic val ue for carbon-carbon bond for mation Nucleophilic addition of an enolate ion to a carbonyl group followed by dehydration of the 3 hydroxy aldehyde yields an a p unsaturated aldehyde... [Pg.783]

You have already had considerable experience with carbanionic compounds and their applications in synthetic organic chemistry The first was acetyhde ion m Chapter 9 followed m Chapter 14 by organometallic compounds—Grignard reagents for example—that act as sources of negatively polarized carbon In Chapter 18 you learned that enolate ions—reactive intermediates generated from aldehydes and ketones—are nucleophilic and that this property can be used to advantage as a method for carbon-carbon bond formation... [Pg.886]

Two techniques have been described for producing trimethylsilyl enol ethers from aldehydes or ketones (10) reaction of (CH2)2SiCl and (C2H3)2N in DMF and reaction of LiN(C2H3)2, which generates enolate ions in the presence of... [Pg.71]

Enolate ion formation (Section 18.6) An a hydrogen of an aldehyde or a ketone is more acidic than most other protons bound to carbon. Aldehydes and ketones are weak acids, with pK s in the 16 to 20 range. Their enhanced acidity is due to the electron-withdrawing effect of the carbonyl group and the resonance stabilization of the enolate anion. [Pg.782]

As noted previously, conjugate addition of a nucleophile to the j3 carbon of an cr,/3-unsaturated aldehyde or ketone leads to an enolate ion intermediate, which is protonated on the a carbon to give the saturated product (Figure 19.16). The net effect is addition of the nucleophile to the C=C bond, with the carbonyl group itself unchanged. In fact, of course, the carbonyl group is crucial to the success of the reaction. The C=C bond would not be activated for addition, and no reaction would occur, without the carbonyl group. [Pg.726]

Many types of carbonyl compounds, including aldehydes, ketones, esters, thioesters, acids, and amides, can be converted into enolate ions by reaction with LDA. Table 22.1 lists the approximate pKa values of different types of carbonyl compounds and shows how these values compare to other acidic substances we ve seen. Note that nitriles, too, are acidic and can be converted into enolate-like anions. [Pg.851]

As an example of enolate-ion reactivity, aldehydes and ketones undergo base-promoted o halogenation. Even relatively weak bases such as hydroxide ion are effective for halogenation because it s not necessary to convert the ketone completely into its enolate ion. As soon as a small amount of enolate is generated, it reacts immediately with the halogen, removing it from the reaction and driving the equilibrium for further enolate ion formation. [Pg.854]

Ketones, esters, and nitriles can all be alkylated using LDA or related dialkyl-amide bases in THE. Aldehydes, however, rarely give high yields of pure products because their enolate ions undergo carbonyl condensation reactions instead of alkylation. (We ll study this condensation reaction in the next chapter.) Some specific examples of alkylation reactions are shown. [Pg.861]

O Base removes an acidic alpha hydrogen from one aldehyde molecule, yielding a resonance-stabilized enolate ion. [Pg.880]

The enolate ion attacks a second aldehyde molecule in a nucleophilic addition reaction to give a tetrahedral alkoxide ion intermediate. [Pg.880]

On the other hand, carbonyl condensation reactions require only a catalytic amount of a relatively weak base rather than a full equivalent so that a small amount of enolate ion is generated in the presence of unreacted carbonyl compound. Once a condensation has occurred, the basic catalyst is regenerated. To carry out an aldol reaction on propanal, for instance, we might dissolve the aldehyde in methanol, add 0.05 equivalent of sodium methoxide, and then warm the mixture to give the aldol product. [Pg.881]

I If one of the carbonyl partners contains no or hydrogens, and thus can t form an enolate ion to become a donor, but does contain an unhindered carbonyl group and so is a good acceptor of nucleophiles, then a mixed aldol reaction is likely to be successful. This is the case, for instance, when either benz-aldehyde or formaldehyde is used as one of the carbonyl partners. [Pg.885]

Tire mechanism of the Claisen condensation is similar to that of the aldol condensation and involves the nucleophilic addition of an ester enolate ion to the carbonyl group of a second ester molecule. The only difference between the aldol condensation of an aldeiwde or ketone and the Claisen condensation of an ester involves the fate of the initially formed tetrahedral intermediate. The tetrahedral intermediate in the aldol reaction is protonated to give an alcohol product—exactly the behavior previously seen for aldehydes and ketones (Section 19.4). The tetrahedral intermediate in the Claisen reaction, however, expels an alkoxide leaving group to yield an acyl substitution product—exactly the behavior previously seen for esters (Section 21.6). The mechanism of the Claisen condensation reaction is shown in Figure 23.5. [Pg.888]

The mixed Claisen condensation of two different esters is similar to the mixed aldol condensation of two different aldehydes or ketones (Section 23.5). Mixed Claisen reactions are successful only when one of the two ester components has no a hydrogens and thus can t form an enolate ion. For example, ethyl benzoate and ethyl formate can t form enolate ions and thus can t serve as donors. They can, however, act as the electrophilic acceptor components in reactions with other ester anions to give mixed /3-keto ester products. [Pg.890]

This reaction illustrates the striking difference in behavior between carboxylic esters on the one hand and aldehydes and ketones on the other. When a carbanion such as an enolate ion is added to the carbonyl group of an aldehyde or ketone (16-41), the H or R is not lost, since these groups are much poorer leaving groups than OR. Instead the intermediate similar to 146 adds a proton at the oxygen to give a hydroxy compound. [Pg.571]

Although the conversion of an aldehyde or a ketone to its enol tautomer is not generally a preparative procedure, the reactions do have their preparative aspects. If a full mole of base per mole of ketone is used, the enolate ion (10) is formed and can be isolated (see, e.g., 10-105). When enol ethers or esters are hydrolyzed, the enols initially formed immediately tautomerize to the aldehydes or ketones. In addition, the overall processes (forward plus reverse reactions) are often used for equilibration purposes. When an optically active compound in which the chirality is due to an asymmetric carbon a to a carbonyl group (as in 11) is treated with acid or base, racemization results. If there is another asymmetric center in the molecule. [Pg.774]

It is not the aldehyde or ketone itself that is halogenated, but the corresponding enol or enolate ion. The purpose of the catalyst is to provide a small amount of enol or enolate. The reaction is often done without addition of acid or base, but traces of acid or base are always present, and these are enough to catalyze formation of the enol or enolate. With acid catalysis the mechanism is... [Pg.776]

In the aldol reaction the a carbon of one aldehyde or ketone molecule adds to the carbonyl carbon of another. Although acid catalyzed aldol reactions are known, the most common form of the reaction uses a base. The base most often used is OH, though stronger bases such as alkoxides (RO ) are sometimes employed. Hydroxide ion is not a strong enough base to convert substantially all of an aldehyde or ketone molecule to the corresponding enolate ion, that is, the equilibrium lies... [Pg.1218]

It not tertiary, the product yield is lowered by transfer of the carbinol hydride ion to the aldehyde to produce a new alkoxide and an enolate ion. Thus, propylene oxide, after reductive cleavage with LDBB and trapping with isobutyraldehyde or p-anisaldehyde, provided 5-methyl-2,4-hexanediol in 40-50% yield or 1-p-anisyl-1,3-butanediol in 44% yield, respectively (in both cases about equal mixtures of diastereoisomers were obtained). The cyclohexene oxide-derived dianion, when trapped with isobutyraldehyde, gave 2-(1-hydroxy-2-methylpropyl)cyclohexanol in 71% yield as a mixture of only partially separable isomers in the ratio 15 11 39 35. [Pg.89]

The gas-phase heats of formation of several enol positive ions of aliphatic aldehydes, ketones, acids, and esters were measured and compared with those of the corresponding keto ions. The enolic ions were found to be thermodynamically more stable by 58-129 kJ moLh This is in marked contrast to the neutral tau-... [Pg.266]

The reaction of a carbonyl (aldehyde or ketone) with a base produces an enolate ion (a nucleophile). This nucleophile attacks any electrophile. What happens when you add a base to a carbonyl with no electrophile present ... [Pg.168]


See other pages where Aldehyde enolate ions is mentioned: [Pg.780]    [Pg.690]    [Pg.780]    [Pg.690]    [Pg.764]    [Pg.773]    [Pg.773]    [Pg.764]    [Pg.773]    [Pg.773]    [Pg.2]    [Pg.854]    [Pg.777]    [Pg.783]    [Pg.1207]    [Pg.1220]    [Pg.13]   
See also in sourсe #XX -- [ Pg.1461 ]




SEARCH



Acidity of Aldehydes and Ketones Enolate Ions

Aldehyde enolate

Aldehyde enols

Aldehydes enolates

Aldehydes enolization

Enolate ions

© 2024 chempedia.info